簡易檢索 / 詳目顯示

研究生: 吳柏毅
Bo-yi Wu
論文名稱: 在新型的卡塞格林太陽能集光器中運用色像差來過濾太陽光中的紫外光和紅外光以提供於室內照明
Innovative Design of Cassegrain Solar Concentrator System for Indoor Illumination Utilizing Chromatic Aberration to Filter out Ultraviolet and Infrared in Sunlight
指導教授: 黃忠偉
Allen Jong-Woei Whang
口試委員: 蕭弘清
Horng-Ching Hsiao
邱炳樟
Bin-Chang Chieu
胡能忠
Neng-Chung Hu
趙涵捷
Han-Chieh Chao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 80
中文關鍵詞: 卡賽格林集光器色像差色散模型色差
外文關鍵詞: chromatic aberration, Cassegrain concentrator, dispersion model, color difference
相關次數: 點閱:266下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前已有許多太陽能的應用及相關研究,目的在引導太陽光進入室內作為照明用途,其中有一種以卡塞格林為架構的集光器具有良好的集光效率。然而日光中紫外光的曝曬對人體有害,且紅外光挾帶大量的熱量,將會影響照明品質。而有鑒於全像集光器效率上的問題,本文發展一個新式的卡塞格林集光系統,利用透鏡的色像差理論來濾除紫外光和紅外光,此外我們也提出一個透鏡的色散模型來分析此系統。在最後的結果中,此集光系統幾乎可以濾除全部的紫外光和一半的紅外光,而所提供照明的光源色座標與太陽光十分相近,其色差值也是小到人眼無法分辨的程度,所以相當適合使用在室內照明的用途。


    Many applications and related studies of solar energy have been focused on guiding sunlight into indoor for illumination purposes. To approach the objective, one of the high efficient solar concentrator is base on cassegrain construction. However, exposure of UV in sunlight has been proved to be hazardous to human, and rich heat content of IR degrades illumination quality. In order to solve the two problems, we develop an innovative cassegrain solar concentrator system utilizing the theory of chromatic aberration by a chromatic lens to reduce UV and IR. A dispersion model to consider the impact of the chromatic lens and a guiding fiber is also proposed. In the result, the system can filter out the UV completely and half of the IR. Further, the chromaticity coordinates of collected light for illumination is almost equal to sunlight, and the color difference is so small that it appears equal to the human eye.

    第1章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第2章 太陽能照明與其優點 4 2.1 間接應用法 4 2.2 直接應用法 7 2.3 太陽光照明的優點 9 2.3.1 安全陽光的照射 10 2.3.2 考慮光汙染 10 2.3.3 安全陽光與動植物壽命 11 2.3.4 安全陽光與情緒 14 2.3.5 安全陽光與健康 19 第3章 太陽光頻譜與色像差 24 3.1 可見光 24 3.2 紫外線(ultraviolet) 26 3.2.1 UV-A 27 3.2.2 UV-B 28 3.2.3 UV-C 30 3.2.4 紫外線的其他用途 31 3.3 紅外線(infrared) 32 3.3.1 紅外線的缺點 34 3.3.2 紅外線的用途 37 3.4 色像差的理論 41 第4章 新型卡塞格林集光系統的設計分法 44 4.1 新型的卡塞格林集光系統 44 4.2 色散模型的建立 48 4.2.1 fx ≧ fbig 49 4.2.2 fx ≦ fsmall 51 4.2.3 fsmall < fx < fbig 52 4.3 公式的參數修正 54 第5章 分析結果與討論 56 5.1 光強度與光纖距離的關係 56 5.2 正規化的日光收集頻譜 59 5.3 色彩表現 62 第6章 結論與未來展望 67 6.1 研究結論 67 6.2 未來展望 68 參考文獻 69

    1. Crisp V. H. C., Littlefair P. J., Cooper I. and McKennan G.., Daylighting as a passive solar energy option: and assessment of its potential in non-domestic buildings. Report BR129, BRE, Garston, UK., 1988.

    2. Lam J. C. and Chan A. L. S., Energy audits and surveys of air-conditioning. In Proceedings of the Australian and New Zealand Architectural Science Association Conference, p. 49, 1995.

    3. Benton, C. C., Daylighting Can Improve the Quality of Light and Save Energy. Architectural Lighting, Vol. 1, pp. 46-48, 1986.

    4. Oddo, S., Surprising Discoveries About Why You Need More Natural Light. House and Garden, Vol. 148, pp. 78-79, 1976

    5. Gillette, G., The Case for Daylighting. The Construction Specifier, pp. 58-63, 1984.

    6. Martin K. L., An Overview of Daylighting Systems. Solar Energy, Vol. 73, No. 2, pp. 77–82, 2002

    7. Feuermann D. and Gordon J. M., Solar surgery: remote fiber optic irradiation with highly concentrated sunlight in lieu of lasers. Opt. Eng., 37(10) pp. 2760–2767, 1998.

    8. Feuermann D., Gordon J. M. and Huleihil M., Laser surgical effects with concentrated solar radiation. Applied Physics Letters, Vol. 81, No. 14 pp. 2653-2656, 2002.

    9. Feuermann D. and Gordon J. M., High-concentration photovoltaic designs based on miniature parabolic dishes. Solar Energy, Vol. 70, No. 5, pp. 423–430, 2001.

    10. Sun J., Israeli T., Reddy T. A., Scoles K., Gordon J. M., and Feuermann D., Modeling and Experimental Evaluation of Passive Heat Sinks for Miniature High-Flux Photovoltaic Concentrators. ASME, Vol.127, pp.138-145, 2005.

    11. N. P. Lavery, Mathematical framework for predicting solar thermal build-up of spectrally selective coatings at the Earth’s surface. Applied Mathematical Modelling, Vol. 31, pp.1635–1651, 2007.

    12. Ludman, J. and Riccobono, F., Holographic solar concentrator for terrestrial photovoltaics. IEEE, First WCPEC, pp.1212-1215, 1994.

    13. Ludman, J. E., Riccobono, J., and Semenova, I. V., The optimization of a holographic system for solar power generation. Solar energy, Vol.60, No.1, pp.1-9, 1997.

    14. M&uuml;eller, H. F. O., Transparent shading devices with concentrating holograms and photovoltaics. Proceedings WREC V, Elsevier Ltd., Part 3, pp.1620-1623, 1997.

    15. Biao Qu, Jixiong Pu, Ziyang Chen, Experimental observation of spectral switch of partially coherent light focused by a lens with chromatic aberration. Optics & Laser Technology, Vol. 39, Issue 6, pp. 1226-1230, 2007.

    16. 陳穎慧,基礎光度學與量測實務,量測資訊,第11~16 頁,2005。

    17. Rafael Serra, Renewable and Sustainable Energy Reviews, Chapter 5 Daylighting, p. 118, 1998.

    18. 林志隆,看不見的光-紫外線,行政院國家科學委員會《科學發展》,407期,72 ~ 77頁,2006。

    19. 行政院環保署,http://www.epa.gov.tw/main/index.asp.

    20. 林志隆,看不見的光-紅外線,行政院國家科學委員會《科學發展》,400期,68 ~ 73頁,2006。

    21. Warren J. Smith, “Modern Optical Engineering”, McGraw-Hill, New York 2000.

    22. Fischer Robert E., Grant Alastair J., Fotheringham Ulrich, Hartmann Peter, and Reichel, Steffen Removing the mystique of glass selection. SPIE, Vol. 5524, pp. 134-146, 2004.

    QR CODE