簡易檢索 / 詳目顯示

研究生: 朱珣穎
Shiun-ying Chu
論文名稱: 使用圖形處理器之平行運算法加速磁振影像對位運算之研究
Accelerating the Image Registration of MRI Volumes by GPGPU Parrallel Computation
指導教授: 黃騰毅
Teng-yi Huang
口試委員: 林益如
Yi-ru Lin
蔡尚岳
Shang-yueh Tsai
莊子肇
Tzu-chao Chuang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 66
中文關鍵詞: 自動切面定位
外文關鍵詞: Automatic slice positioning
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們使用磁振造影(MRI)來觀測患者的手術前後的差異,以及在第一次的檢查和第二次的復檢,可知病患是否有改善。但在觀測的過程中,會有些問題:由於患者在手術前所掃描的影像,以及在手術後所掃描的影像,兩次所掃描的位置會有偏差,甚至在同一次掃描時,作多次的影像掃描,病人也有可能頭部轉動的狀況。這些狀況都會影響我們分析訊號的結果,造成一些誤差。假使在造影掃描過程中,手術前後的切面選擇需要利用到人為的操作,手動選擇切面時,如果角度以及位置在前後兩次的觀測影像不相符合時,會影響醫生評估,這對病患會造成非常的不利影響。
    所以,我們須要有一套系統,可以自動切面定位前後兩次觀測影像,來得到可靠的數據結果。在兩次掃描,我們各掃出一組三維的影像,藉由我們使用的一些影像分析方法,去作定位,在分析過程中,也利用NVIDIA CUDA 作一個加速運算的動作,這可以大幅的縮短我們分析計算影像所需的時間。既而可算出兩次影像的偏移參數,使兩張影像達到最相近的位置。
    因此,可更加確定手術前後切面位置的一致性,得到我們所希望觀察到手術前後的差異,提高了數據分析的可靠度。


    Optimal registration position is important for MRI scan, especially lesion observation in clinical use which analyzes pathology or tumor in pre-treatment or post-treatment, it needs an accurate estimation and contrast. In order to attend the accuracy of medical image in different times of scan, it must rely on effective image registration technique with Powell’s method or Brent’s method. In our study, we proposed a calculation method which with mutual information and Brent’s method, can improve the scan time of 3D MR image registration. The efficiency of the CUDA system calculation effectively accelerated the data analysis time and the result of registration was practically to compare between the different positions due to misregistration by many factors. Nevertheless, we improved the analyze time with a calculation technique which may help the application of clinical operations.

    Abstract i 摘要 ii 目錄 iii 第一章 緒論 1 1.1 磁振造影的基本原理 1 1.2 影像對位 5 1.3 影像對位之運算 9 1.4 平行運算 12 第二章 材料與方法 16 2.1 影像對位之主要運算:剛體轉換、互資訊、最佳化演算法 16 2.2 剛體位移之平移及旋轉 17 2.2.1 影像平移及旋轉 17 2.2.2 插值運算法 23 2.3 影像匹配 26 2.3.1 消息理論 28 2.3.2 聯合熵 29 2.3.3 互資訊 32 2.4 影像校準之最佳化 33 2.4.1 區域搜尋法 33 2.4.2 Powell’s共軛方向法 36 2.4.3 Brent’s疊代法 38 2.5 實驗資料及運算硬體 40 第三章 實驗結果 42 3.1 模擬對位實驗 44 3.1.1 不同位移的變化 44 3.1.2 不同角度的變化 46 3.1.3 不同亮度的變化 48 3.1.4 全域搜尋法及區域搜尋法的比較 50 3.2 GPU加速運算 51 3.2.1 三維影像於GPU與CPU中對位結果比較 51 3.2.2 二維影像自動對位 54 第四章 結論與未來展望 55 4.1 結果與討論 55 4.2 未來展望 56 參考文獻 57

    1.Hashemi, Ray H., W.G. Bradley, and C.J. Lisanti, MRI the basics, 2nd edition. 1997.
    2.Viola, P.A., W.M., Wells Alignment by maximisation of mutual information. Proc. 5th Int. Conf. on Computer Vision. 1995: p. 15D23.
    3.Collignon, A., D.V., P. Suetens, G. Marchal, 3D multi-modality medical image registration using feature space clustering. Proc. 1st Int. Conf. on Computer Vision, Virtual Reality and Robotics in Medicine, Nice, France, Spinger. 1995: p. 195D204.
    4.Studholme, C., D.L.G.H., D.J., Hawkes, Multiresolution voxel similarity measures for MR-PET registration, in Y. Bizais, C. Barillot, R. Di Paola, (Eds.), Proc. of Information Processing in Medical Imaging, Brest, France, Kluwer Academic Publishers, Dordrecht. 1995: p. 287D298.
    5.Viola, P., W.M.W.I., Alignment by Maximization of Mutual Information, PhD thesis, Massachusetts Institute of Technology. 1995.
    6.Ardekani, B.A., A.H. Bachman, S.C. Strother, Y. Fujibayashi, and Y. Yonekura, Impact of inter-subject image registration on group analysis of fMRI data. International Congress Series, 2004. 1265: p. 49-59.
    7.Brown, L.G., "A survey of image registration techniques". 1992. 24, no. 4: p. 325-376.
    8.Shams, R., P. Sadeghi, R. Kennedy, and R. Hartley, A Survey of Medical Image Registration on Multicore and the GPU. Signal Processing Magazine, IEEE, 2010. 27(2): p. 50-60.
    9.Maes, F., A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging, 1997. 16(2): p. 187-98.
    10.Maes, F., D. Vandermeulen, and P. Suetens, Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information. Medical Image Analysis, 1999. 3(4): p. 373-386.
    11.Palos, G., N. Betrouni, M. Coulanges, M. Vermandel, V. Devlaminck, and J. Rousseau, Multimodal matching by maximization of mutual information and optical flow technique. Conf Proc IEEE Eng Med Biol Soc, 2004. 3: p. 1679-82.
    12.Matsopoulos, G.K., K.K. Delibasis, N.A. Mouravliansky, P.A. Asvestas, K.S. Nikita, V.E. Kouloulias, and N.K. Uzunoglu, CT-MRI automatic surface-based registration schemes combining global and local optimization techniques. Technol Health Care, 2003. 11(4): p. 219-32.
    13.Press, W. H., W.T.V., S. A. Teukolsky and B. P. Flannery, Numerical Recipes in C, 2nd Edition,Cambridge University Press,Cambridge, England. 1992.
    14.Atkin, D., Computer Shopper: The Right GPU for You.
    15.Thomas, T.M.C.a.J.A., Elements of Information Theory. New York: Wiley. 1991.
    16.Vajda, I., Theory of Statistical Inference and Information. Dordrecht, The Netherlands: Kluwer. 1989.
    17.Studholme, C., Pattern Recognition 1999.
    18.Viola, P., and W.M. Wells, I., Alignment by maximization of mutual information,in Proc. Int. Conf. Computer Vision (ICCV). June 1995: p. 16–23.
    19.D.W. Eggert, A.L., R.B. Fisher, Estimating 3-D rigid body transformations: a comparison of four major algorithms, Machine Vision and Applications. 1997: p. 272-290.
    20.Brent, R.P., Algorithms for Minimization without Derivatives,Prentice-Hall, Englewood Cliffs, New Jersey. 1973.

    無法下載圖示 全文公開日期 2015/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE