簡易檢索 / 詳目顯示

研究生: 陳仲軒
CHUNG-HSUAN CHEN
論文名稱: 運用極化保持光纖與微流道之頻譜干涉表面電漿共振生醫感測
Spectral Interferometry-Based Surface Plasmon Resonance Biosensing through Polarization Maintaining Fiber and Microfluidic Channel
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 劉信孚
Hsin-Fu Liu
林智暉
Chih-Hui Lin
周錫熙
Hsi-Hsir Chou
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 91
中文關鍵詞: 表面電漿共振生醫感測頻譜干涉儀
外文關鍵詞: Surface Plasmon Resonance, Biosensing, spectral interferometry
相關次數: 點閱:247下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

利用光電效應及其後續衍生之科技加上基礎之光學與生命科學是推動生醫光電科技發展的主要驅力。近來由於表面電漿子的特性可利用成為進入奈米光學領域的重要途徑,其潛力受到研究人員矚目並且在國外亦有應用化的商用儀器問世,因此如何將生化反應與光學感測有效結合,也是現今日趨重要的問題。
表面電漿共振(Surface plasmon resonance, SPR)乃是一種存在於金屬與介電質介面的縱向電荷密度振動激發現象。本論文以稜鏡耦合來產生表面電漿效應,當光入射至鍍有金膜之稜鏡反射後,在某一特定角度或波長下,光之強度與相位會發生劇烈的變化,此一角度稱為共振角度,而波長稱為共振波長。改變介電質層之折射率時,共振波長會產生位移,相位則會產生變化。將此特性應用於表面電漿共振生物感測器具有即時檢驗、免標識、專一性及高靈敏度…等特性,因此可用在生物分子檢測上,對物質進行有效分析檢測微小濃度折射率變化。普遍常用的表面電漿共振量測方式共有四種,角度調制、波長調制、強度調制與相位調制,其中又以相位調制系統於共振角位置其相位最為靈敏,而為了取得反射光相位數據,我們採用寬頻譜光源來進行干涉方式測量。
在本論文中,我們將本實驗室過往垂直光路的SPR量測系統精簡化,改成水平面一致性高度,以省去在調整角度時之線性移動軸的相互補償步驟。而為了確保經過極化調整的p極化光與s極化光之穩定性,我們將極化控制器連接入射端collimator的光纖改採用極化保持光纖(polarization-maintaining optical fiber, PM fiber)以穩定干涉頻譜。同時設計並使用微流道來注入檢體溶液,解決以往本實驗室檢體長時間暴露在空氣中可能造成的誤差,如溶液蒸發導致濃度變化、檢體汙染等問題,如此也能在檢體固定化上保有穩定度,以利量測使用探針(Probe)之微小核醣核酸(miRNA)及流感檢體濃度變化,本論文證實Probe經固定化後能夠確實抓取miRNA及流感合成DNA,並求出靈敏度為0.22491 (rad/(μg/mL)),解析度為2.8517086 μg/mL。


Photoelectric effect and its derivative technologies become one of the major developed projects of biophotonics in recent years. Through the features of surface plasmon, the booming technology from the nanophotonics and computing has not only promoted the life science development but also led the biotechnology progress to a new era.
Surface plasmon resonance (SPR) is a physical phenomenon that occurs between the interface of metal and non-conductive material. When a TM polarized light wave is entering a glass prism and satisfying the total internal reflection, the incident light will resonate with the thin metal film which is deposited on the prism and generate the evanescent wave that penetrates into the dielectric layer. When the light is reflected by the prism at a specific angle or wavelength, the optical power will rapidly drop to the minimum because of the resonant effect. In the meantime, the reflected light phase will also change dramatically. This specific angle and wavelength are named resonant angle and resonant wavelength, respectively. When the dielectric layer refractive index is changed, the resonant angle or resonant wavelength will shift, same as the reflected light phase. By applying these features onto biosensing, the real-time, high sensitivity and label-free detection could be demonstrated. Among four common SPR modulation approaches, angle, wavelength, intensity and phase, the phase modulation demonstrates the highest sensitivity. In order to retrieve the reflected light phase, the optical interference system is considered as a good implementation.
In this thesis, we simplify the old SPR system and combine the microfluidic channel to stabilize specimen solution. Then, a superluminescent emitting diode is utilized as the incident light source to generate the s-polarized light and p-polarized light in a common path. The p-polarization will interact and experience an additional optical path from SPR. Furthermore, in order to insure the stability of s- and p-polarized light, we use a polarization-maintaining optical fiber to connect the incident collimator and the polarization controller. Finally, a linear polarizer is implemented to combine two polarizations to illustrate the interference and produces a spectral interferometry-based SPR sensor. We successfully demonstrate the sensitivity of wavelength modulation and phase modulation of influenza DNA and microRNA before and after the probing process. The sensitivity on the phase and wavelength modulation from immobilized probes increases higher than without immobilization.

摘要 I Abstract II 誌謝 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 3 1.2.1禽流感 3 1.2.2微型核糖核酸 5 1.3 研究之重要性 7 1.4 論文架構 8 第二章 文獻探討 9 2.1 表面電漿波原理 9 2.1.1 表面電漿波理論推導 9 2.1.2 激發表面電漿波之條件 17 2.2表面電漿之耦合方式 18 2.2.1 稜鏡耦合 18 2.2.2光柵耦合 19 2.2.3 波導耦合 20 2.3 表面電漿共振生物感測器 21 2.3.1 生物感測器簡介 21 2.3.2 表面電漿共振生物感測器 22 2.3.3 靈敏度與解析度 23 2.4 國內外研究比較 24 2.4.1 角度調制之研究比較 24 2.4.2 波長調制之研究比較 25 2.4.3 強度調制之研究比較 27 2.5 利用干涉之SPR感測器之研究 27 2.5.1 利用空間干涉之SPR感測器之研究 28 2.5.2 利用頻譜干涉之SPR感測器之研究 31 第三章 研究方法 34 3.1 金薄膜厚度設計 34 3.1.1 Kretschman組態下系統反射率 34 3.1.2 金薄膜厚度模擬 38 3.2 SPR金薄膜之製程 41 3.2.1 使用設備 41 3.2.2 製程步驟 42 3.3 微流道結構簡介 44 3.4 頻譜干涉表面電漿共振感測器 45 第四章 實驗步驟與結果 48 4.1 實驗架構 48 4.2 實驗步驟 50 4.2.1 待測物濃度調配 50 4.2.2 硫醇修飾DNA探針 52 4.2.3 DNA之固定化程序 53 4.2.4 入射角度之控制 54 4.2.5 頻譜干涉SPR實驗步驟 57 4.3 miRNA量測結果與分析 59 4.3.1 使用probe之量測結果與分析 59 4.4 流感量測結果與分析 64 4.4.1 使用修飾probe之流感合成DNA量測結果與分析 64 4.4.2 使用probe之流感DNA量測結果與分析 69 第五章 結論與未來展望 72 5.1 結論 72 5.2 未來展望 74 參考文獻 75

[1]A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik, vol. 216, pp. 398-410, 1968.
[2]E. Krestschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Zeitschrift für Physik, vol. 241, pp. 313, 1971.
[3]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays”, Nature, vol. 391, pp. 667-669, 1998.
[4]G. Acebedo, A. Hayek, M. Klegerman, L. Crolla, E. Bermes, and M. Brooks, "A rapid ultramicro radioimmunoassay for human thyrotropin," Biochemical and Biophysical Research Communications, vol. 65, no. 2, pp. 449-455, Jul. 1975.
[5]R. S. Yalow and S. A. Berson, "IMMUNOASSAY OF ENDOGENOUS PLASMA INSULIN IN MAN," Journal of Clinical Investigation, vol. 39, no. 7, pp. 1157-1175, Jul. 1960.
[6]邱淑君,林智暉,林永政,李政壕,陳豪勇, “常用市售流感快速檢測試劑之效能比較” 疫情報導, 21卷8期, pp. 605-617, 2005.
[7]林佳蓓,高明輝,方怡雅,王德原,羅吉方, “A型流行性感冒病毒快速診斷試劑效能評估調查研究,” 食品藥物研究年報, 2, pp. 281-287, 2011.
[8]S. L. Yu, H. Y. Chen, G. C. Chang, C. Y. Chen, H. W. Chen, S. Singh, C. L. Cheng, C. J. Yu, Y. C. Lee, H. S. Chen, T. J. Su, C. C. Chiang, H. N. Li, Q. S. Hong, H. Y. Su, C. C. Chen, W. J. Chen, C. C. Liu, W. K. Chang, W. J. Chen, K. C. Li, J. J. W. Chen and P. C. Yang, “Micro RNA signature predicts survival and relapase in lung cancer,” Cancer Cell, 13(1), pp. 48-57, 2008.
[9]C. Pan, “Determination of small biomolecule by fiber-optic surface plasma resonance sensor,” Taipei, 2007.
[10]吳民耀,劉威志, “表面電漿子理論與模擬,” 物理雙月刊,廿八卷二期,pp. 486-496, 2006.
[11]邱國斌,蔡定平, “金屬表面電漿簡介,” 物理雙月刊,廿八卷二期,pp. 472-485, 2006.
[12]P.L. Hung, “Latent TB infection among healthcare workers,” Master dissertation, National Defense Medical Center, Taipei, Taiwan, 2006.
[13]J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chemical Reviews, vol. 108, pp. 462-493, 2008.
[14]W. Kretschmann, E.; Raether, H. Z. Naturforsc, pp. 2135-2136, 1968.
[15]A. Hulanicki, et al, “Chemical sensors definitions and classification,” Pure and Applied Chemistry, vol. 63, no. 9, pp. 1247-1250, 1991.
[16]吳宗正, “生物感測器,” 生物技術,九州出版社,第十八章,pp. 24-262,1996.
[17]楊自森,吳見明,蔡旻龍,莊淳宇,崔豫笳,許志楧, ”分子生醫光電科學與技術,” 物理雙月刊,廿七卷五期,pp. 670-687,2005.
[18]J. Homola, “Surface Plasmon Resonance Based Sensors,” Springer Sereis on Chemical Sensors and Biosensors, Springer-Verlag Berlin Heidelberg, vol. 4, 2006.
[19]J. Homola, I. Koudela, Sinclair S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B, vol. 54, pp. 16-24, 1999.
[20]G. Gupta, and J. Kondoh, “Tuning and sensitivity enhancement of surface plasmon resonance sensor,” Sensors and Actuators B, vol. 122, pp. 81-388, 2007.
[21]C. Alleyne, A. Kirk, R. McPhedran, N. Nicorovici and D. Maystre, “Enhanced SPR sensitivity using periodic metallic structures,” Optics Express, vol. 15, No. 13, 2007.
[22]A. Lahav, M. Auslender, and I. Abdulhalim, “Sensitivity enhancement of guided-wave surface-plasmon resonance sensors,” Optics Letters, vol. 33, No. 21, 2008.
[23]A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sensors and Actuators A, vol. 159, pp. 4–32, 2010.
[24]K. S. Lee, J. M. Son, D. Y. Jeong, T. S. Lee and W. M. Kim, “Resolution Enhancement in Surface Plasmon Resonance Sensor Based on Waveguide Coupled Mode by Combining a Bimetallic Approach,” Sensors, vol. 10, pp. 11390-11399, 2010
[25]G. G. Nenninger, , , P. Tobiška, J. Homola and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sensors and Actuators B, vol. 74, pp. 145-151, 2001.
[26]J. Dostálek, J. Čtyroký, J. Homola, E Brynda, M Skalský, P. Nekvindová, J. Špirková, J. Škvor and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sensors and Actuators B, vol. 76, pp. 8-12, 2001.
[27]R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sensors and Actuators B, vol. 123, pp. 10-12, 2007.
[28]Q. Liu, Z.-M Qi, Z. Zhang, and D.-F. Lu, “Theoretical and Experimental Investigation of Ultrahigh Sensitivity of Wavelength-Interrogated Infrared Surface Plasmon Resonance Sensors,” Transducers'll, Beijing, China, June 5-9, 2011.
[29]A. Shalabney and I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Optics Letters, vol. 37, No. 7, 2012.
[30]J. Homola, Sinclair S. Yeea, G. Gauglitzb, “Surface plasmon resonance sensors: review,” Sensors and Actuators B, vol. 54, pp. 3-15, 1999.
[31]M. Kashif, A. Ashrif, A. Bakar, N. Arsad and S. Shaari, “Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry,” Sensors, vol. 14, pp. 1591-1593, 2014.
[32]Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Analytical Chemistry, vol. 80, No.14, pp. 5590-5595, 2008.
[33]S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sensors and Actuators B, vol. 35-36, pp. 187-191, 1996.
[34]A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron, pp. 653-654, 1997.
[35]林萱, “利用相位式表面電漿共振系統檢測免疫球蛋白鍵結之應用分析,” 國立中央大學光電科學與工程學系,桃園,2012.
[36]許志銘, ”表面電漿共振感測儀應用於抗體與抗原之動力學分析,” 國立清華大學生醫工程與環境科學所分子生醫光電組碩士論文, 2004.
[37]Z. Zheng, Y. Wan, X. Zhao, and J. S. Zhu, “Spectral interferometric measurement of wavelength-dependent phase response for surface plasmon resonance sensors,” Applied Optics, vol. 48, No. 13, 2009.
[38]P. Hlubina, M. Duliakova, M. Kadulova, D. Ciprian, “Spectral interferometry- based surface plasmon resonance sensor,” Optics Communications, vol. 354, pp. 240-245, 2015.
[39]A. Rakić, A. Djurišić, J. Elazar and M. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied Optics, vol. 37, pp. 5271-5283, 1998.
[40]P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Physical Review B, vol. 6, pp. 4370-4379, 1972.
[41]SCHOTT Taiwan Ltd., optical glass data sheets, 2015.
[42]C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” Journal of the Optical Society of America B, vol.17, No. 10, 2000.
[43]S. A. Kim and S. J. Kim, “Detection of Avian Influenza-DNA Hybridization Using Wavelength-scanning Surface Plasmon Resonance Biosensor,” Journal of the Optical Society of Korea, vol. 13, No. 3, pp. 392-397, 2009.
[44]P. Hlubina, J. Lunˇa´cˇek, D. Ciprian and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Optics Communications, vol. 281, pp. 2349–2354, 2008.

無法下載圖示 全文公開日期 2019/08/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE