簡易檢索 / 詳目顯示

研究生: 林成益
Cheng-yi Lin
論文名稱: 廣泛加權移動平均方法在預測上之應用
Applying the GWMA Method in Forecasting
指導教授: 許總欣
Tsung-Shin Hsu
徐世輝
Shey-Huei Sheu
口試委員: 王國雄
Kuo-Hsiung Wang
王福琨
Fu-Kwun Wang
林義貴
Yi-Kuei Lin
柯沛程
Jau-Chuan Ke
簡郁紘
Yu-Hung Chien
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 76
中文關鍵詞: 指數加權移動平均廣泛加權移動平均追蹤訊號; 預測多國股價指數
外文關鍵詞: EWMA, GWMA, Tracking signal, multi-stock index
相關次數: 點閱:177下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在時間序列模式的預測上,經常使用指數加權移動平均(EWMA)的方法來調整預測誤差,降低因趨勢出現了結構性變化所產生的趨勢變異,使預測模式能得到較佳的預測結果。過去的研究已提出了廣泛加權移動平均(GWMA)的方法及概念,證實了它的概念與EWMA方法相同,但是GWMA方法多了一個參數,在偵測小偏移變動時較為敏感,應用的範圍也較EWMA廣泛。因此,本論文應用GWMA的概念及方法,導入在追踪信號的狀態空間模式中的限制式的衰減趨勢(restricted damped trend)模式,將結構性變化所導致的平滑誤差統計量,由EWMA形式改變成GWMA形式,使預測模式增加一項調整參數λ,將模式區分成λ<1、λ=1及λ>1三種情況,λ=1時為原來的限制式衰減趨勢模式,另外多增加了λ<1及λ>1的情況,使模式的適用範圍更為廣泛,並針對各項參數值對預測模式所產生的影響進行比較,找出此GWMA預測模式較佳的參數值設定範圍。

    而在預測的領域中,除了應用於企業營運績效及財務的預測外,最常應用的領域非金融市場莫屬,尤其是在股票市場的股價指數及外匯市場的匯率變動的預測。由於全球化趨勢使得國際金融交易的波動性及關連性增加,國際股市的漲跌都或多或少會影響他國的股票市場,尤其是美國DJ工業指數在國際股市都扮演一個極重要的角色,過去的研究皆以美國股市來作為各種預測模式的因子,進行他國股價指數之預測。而這些探討國際間金融市場連動關係所進行的預測模式又常使用EWMA方法,因此,本論文亦提出以GWMA方法應用於金融市場預測領域,以取代過去常用的EWMA方法,結合美國DJ工業指數、NASDAQ指數、日經NI225指數、韓國KOSPI指數、及香港HSI指數等多個國際股價指數的波動組合來預測台灣加權股價收盤指數,找出最小預測誤差的國際股市組合以及最佳組合的GWMA模式的參數設定值,並與EWMA模式做比較,探討兩種預測模式之差異。

    關鍵詞:指數加權移動平均; 廣泛加權移動平均; 追蹤訊號; 預測; 多國股價指數


    Time series models often use the exponentially weighted moving average (EWMA) method to adjust the prediction error and reduce structural changes arising from variations in trends, enabling the model to obtain better forecasting results. In past research, had proposed the generally weighted moving average (GWMA) method and proved that this method is almost identical to the EWMA method. The GWMA method adds a parameter, is more sensitive to small fluctuations, and has a wider range of applications than EWMA. Therefore, this dissertation applies the GWMA method to a restricted damped trend model that changes the smoothed error statistic from the EWMA form to the GWMA form, and adds a correction parameter to distinguish three scenarios: , , and . The original restricted damped trend model applies only to , enabling the model to capture situations in which and , increasing its generality. This dissertation also compares the effect of various parameter values on the predictive model and finds the range of parameter settings that optimize the model.

    In addition to forecasting of a company's operating performance, the most applicable field for this model is the financial markets, in particular predicting changes in these markets, stock indexes, and exchange rates. Globalization has increased the volatility of international financial transactions, particularly those related to the international stock markets. An increase in the volatility of one country’s stock market spreads throughout the globe, affecting other countries’ stock markets. In particular, the Dow Jones Industrial Average plays an extremely important role in the international stock market. Past studies used this American stock market as a factor in various models to predict the performance of other countries’ stock indexes. These studies explored national index-linked relationship forecasting models, which were often based on the EWMA method. This study replaces the EWMA method with the GWMA method in the forecasting field and data from the Dow Jones Industrial Average, the NASDAQ, Japan’s Nikkei 225, the Korea Composite Stock Price Index, and the Hong Kong Hang Seng Index to predict the performance of the Taiwan Capitalization Weighted Stock Index. This study attempts to find the smallest prediction error using the optimal combination of GWMA model parameters and various international stock market data, and compares the results with that found using the EWMA model to explore differences between the two types of forecasting models.

    Keywords:EWMA; GWMA; Tracking signal; Forecasting; multi-stock index

    中文摘要 ............................................... I 英文摘要 .............................................. III 誌謝 ................................................... V 目錄 .................................................. VI List of Notations .....................................VIII List of Figures and Tables ............................. X Chapter 1 Introduction ................................ 1 1.1 Background .................................... 1 1.2 Research Objectives ........................... 4 1.3 Literature Review ............................ 5 1.4 Scope and Outline of Research ................. 7 Chapter 2 Description of the GWMA Model............... 11 Chapter 3 Application of GWMA Method to Tracking Signal State Space Model .................................... 15 3.1 Introduction ................................. 15 3.2 Application of GWMA to a Signal Tracking Prediction Model.............................. 17 3.3 Empirical Study .............................. 23 Chapter 4 Applying the GWMA Method to the Volatility of a Combined Multi-Country Stock Index to Predict Performance of the TAIEX...............30 4.1 Introduction ..................................... 30 4.2 Model for a Combined Multi-Country Stock Index.... 33 4.3 Empirical Study................................... 40 4.3.1 Combined Multi-Country Stock markets............ 40 4.3.2 Setting the Optimal Parameters for the GWMA Model............................................45 Chapter 5 Conclusions and Suggestions for Future Research ................................... 48 5.1 Conclusions .................................... 48 5.1.1 Prediction of the company’s operating performance.................................. 48 5.1.2 Prediction of the TAIEX...................... 49 5.2 Suggestions for Future Research .............. 52 References ............................................ 54 作者簡介 .............................................. 62

    [1] Akram, M., Hyndman, R. J., and Ord, J. K., “Exponential smoothing and non-negative data,” Australian & New Zealand Journal of Statistics, vol. 51, no. 4, pp. 415-432, Dec, (2009).
    [2] Apley, D. W., “Time series control charts in the presence of model uncertainty,” Journal of Manufacturing Science and Engineering-Transactions of the Asme, vol. 124, no. 4, pp. 891-898, Nov, (2002).
    [3] Baillie, R. T., Bollerslev, T., and Mikkelsen, H. O., “Fractionally integrated generalized autoregressive conditional heteroskedasticity,” Journal of Econometrics, vol. 74, no. 1, pp. 3-30, (1996).
    [4] Beck, S., “Autoregressive conditional heteroscedasticity in commodity spot prices,” Journal of Applied Econometrics, vol. 16, no. 2, pp. 115-132, Mar-Apr, (2001).
    [5] Bollerslev, T., “Generalized autoregressive conditional heteroskedasticity,” Journal of Econometrics, vol. 31, no. 3, pp. 307-327, (1986).
    [6] Brooks, C., and Chong, J., “The cross-currency hedging performance of implied versus statistical forecasting models,” Journal of Futures Markets, vol. 21, no. 11, pp. 1043-1069, Nov, (2001).
    [7] Chang, J. R., Wei, L. Y., and Cheng, C. H., “A hybrid ANFIS model based on AR and volatility for TAIEX forecasting,” Applied Soft Computing, vol. 11, no. 1, pp. 1388-1395, Jan, (2011).
    [8] Chen, C. W. S., Gerlach, R., Cheng, N. Y. P. et al., “The impact of structural breaks on the integration of the ASEAN-5 stock markets,” Mathematics & Computers in Simulation, vol. 79, no. 8, pp. 2654-2664, (2009).
    [9] Cheng, C. H., and Wei, L. Y., “Volatility model based on multi-stock index for TAIEX forecasting,” Expert Systems with Applications, vol. 36, no. 3, pp. 6187-6191, Apr, (2009).
    [10] Dickinson, D. G., “Stock market integration and macroeconomic fundamentals: An empirical analysis, 1980-95,” Applied Financial Economics, vol. 10, no. 3, pp. 261-276, (2000).
    [11] Engle, R. F., and Mustafa, C., “Implied ARCH models from options prices,” Journal of Econometrics, vol. 52, no. 1-2, pp. 289-311, (1992).
    [12] Engle, R. F., Granger, C. W. J., and Kraft, D., “Combining competing forecasts of inflation using a bivariate arch model,” Journal of Economic Dynamics and Control, vol. 8, no. 2, pp. 151-165, (1984).
    [13] Eun, C. S., and Shim, S., “International transmission of stock-market movements,” Journal of Financial and Quantitative Analysis, vol. 24, no. 2, pp. 241-256, Jun, (1989).
    [14] Gardner, E. S., “Note: Rule-based forecasting vs. damped-trend exponential smoothing,” Management Science, vol. 45, no. 8, pp. 1169-1176, Aug, (1999).
    [15] Gardner, E. S., “Exponential smoothing: The state of the art - Part II,” International Journal of Forecasting, vol. 22, no. 4, pp. 637-666, (2006).
    [16] Gardner, E. S., and McKenzie, E., “Forecasting trends in time-series,” Management Science, vol. 31, no. 10, pp. 1237-1246, (1985).
    [17] Gould, P. G., Koehler, A. B., Ord, J. K. et al., “Forecasting time series with multiple seasonal patterns,” European Journal of Operational Research, vol. 191, no. 1, pp. 207-222, Nov, (2008).
    [18] Huarng, K. H., Yu, T. H. K., and Hsu, Y. W., “A multivariate heuristic model for fuzzy time-series forecasting,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 37, no. 4, pp. 836-846, (2007).
    [19] Hung, J. C., “A Fuzzy Asymmetric GARCH model applied to stock markets,” Information Sciences, vol. 179, no. 22, pp. 3930-3943, (2009).
    [20] Hung, J. C., “Adaptive Fuzzy-GARCH model applied to forecasting the volatility of stock markets using particle swarm optimization,” Information Sciences, vol. 181, no. 20, pp. 4673-4683, Oct, (2011).
    [21] Hyndman, R. J., and Koehler, A. B., “Another look at measures of forecast accuracy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679-688, (2006).
    [22] Hyndman, R. J., Koehler, A. B., Snyder, R. D. et al., “A state space framework for automatic forecasting using exponential smoothing methods,” International Journal of Forecasting, vol. 18, no. 3, pp. 439-454, Jul-Sep, (2002).
    [23] Jiang, Y., Xu, L., and Wang, H., “Influencing factors for predicting financial performance based on genetic algorithms,” Systems Research and Behavioral Science, vol. 26, no. 6, pp. 661-673, (2009).
    [24] Kim, S. W., and Rogers, J. H., “International stock price spillovers and market liberalization: Evidence from Korea, Japan, and the United States,” Journal of Empirical Finance, vol. 2, no. 2, pp. 117-133, (1995).
    [25] Kuen, T. Y., and Hoong, T. S., “Forecasting volatility in the Singapore stock market,” Asia Pacific Journal of Management, vol. 9, no. 1, pp. 1-13, (1992).
    [26] Makridakis, S., and Hibon, M., “The M3-Competition: results, conclusions and implications,” International Journal of Forecasting, vol. 16, no. 4, pp. 451-476, Oct-Dec, (2000).
    [27] McKenzie, E., and Gardner, E. S., “Damped trend exponential smoothing: A modelling viewpoint,” International Journal of Forecasting, vol. 26, no. 4, pp. 661-665, Oct-Dec, (2010).
    [28] Miller, D. M., and Williams, D., “Damping seasonal factors: Shrinkage estimators for the X-12-ARIMA program,” International Journal of Forecasting, vol. 20, no. 4, pp. 529-549, Oct-Dec, (2004).
    [29] Miller, T., and Liberatore, M., “Seasonal exponential smoothing with damped trends - an application for production planning,” International Journal of Forecasting, vol. 9, no. 4, pp. 509-515, Dec, (1993).
    [30] Park, C. W., and Yi, A. C., “Mispricing of US Shocks in the Korean Stock Market,” Asia-Pacific Journal of Financial Studies, vol. 40, no. 3, pp. 347-376, Jun, (2011).
    [31] Roberts, S. W., “Control chart tests based on geometric moving averages,” Technometrics, vol. 1, no. 1, pp. 239-250, (1959).
    [32] Sheu, S. H., and Griffith, W. S., “Optimal number of minimal repairs before replacement of a system subject to shocks,” Naval Research Logistics, vol. 43, pp. 319-333, Aug, (1996).
    [33] Sheu, S. H., and Lin, T. C., “The generally weighted moving average control chart for detecting small shifts in the process mean ” Quality Engineering, vol. 16, no. 2, pp. 209-231, Dec, (2003).
    [34] Shi, S., Xu, L. D., and Liu, B., “Applications of artificial neural networks to the nonlinear combination of forecasts,” Expert Systems, vol. 13, no. 3, pp. 195-201, (1996).
    [35] Shi, S. M., Xu, L. D., and Liu, B., “Improving the accuracy of nonlinear combined forecasting using neural networks,” Expert Systems with Applications, vol. 16, no. 1, pp. 49-54, (1999).
    [36] Shin, H. W., and Sohn, S. Y., “Application of an EWMA combining technique to the prediction of currency exchange rates,” IIE Transactions (Institute of Industrial Engineers), vol. 39, no. 6, pp. 639-644, (2007).
    [37] Snyder, R. D., and Koehler, A. B., “Incorporating a tracking signal into a state space model,” International Journal of Forecasting, vol. 25, no. 3, pp. 526-530, Jul-Sep, (2009).
    [38] Wu, M. C., Lin, S. Y., and Lin, C. H., “An effective application of decision tree to stock trading,” Expert Systems with Applications, vol. 31, no. 2, pp. 270-274, (2006).
    [39] Zhang, L. Y., Govindaraju, K., Lai, C. D. et al., “Poisson DEWMA control chart,” Communications in Statistics-Simulation and Computation, vol. 32, no. 4, pp. 1265-1283, (2003).
    [40] Zheng, F., Xu, L. D., and Tang, B., “Forecasting regional income inequality in China,” European Journal of Operational Research, vol. 124, no. 2, pp. 243-254, (2000).
    [41] Zhu, X., Wang, H., Xu, L. et al., “Predicting stock index increments by neural networks: The role of trading volume under different horizons,” Expert Systems with Applications, vol. 34, no. 4, pp. 3043-3054, (2008).

    QR CODE