簡易檢索 / 詳目顯示

研究生: Sammy Kiplangat Rotich
Sammy Kiplangat Rotich
論文名稱: 熱噴塗Al0.5CoCrFeNi2Ti0.5高熵合金塗層的研究
Investigation of Thermal Sprayed Al0.5CoCrFeNi2Ti0.5 High Entropy Alloy Coatings
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 王朝正
Chaur-Jeng Wang
鄭偉鈞
Wei-Chun Cheng
丘群
Chun Chiu
李志偉
Jyh-Wei Lee
開物
Wu Kai
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 91
中文關鍵詞: 高熵合金Al0.5CoCrFeNi2Ti0.5大氣電將熱噴塗技術氣體霧化法冷噴塗技術析出強化
外文關鍵詞: HEAs, Al0.5CoCrFeNi2Ti0.5, Atmospheric Plasma Spraying, Gas atomization, Cold Spray, Wear Resistance
相關次數: 點閱:172下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇研究於Al0.5CoCrFeNi2中添加鈦元素,以改善其於塗層型態之硬度和耐磨性等機械性質。採用氣體霧化法製備Al0.5CoCrFeNi2Ti0.5高熵合金(HEA)粉末,合金粉末具有球形和均勻的元素分佈,依照粒徑進行篩濾後,選擇粒徑為 10-60 和 60-120 µm 合金粉末用於進一步材料分析和合金塗層之表面改質應用。經分析結果指出,合金粉末具有初始的 FCC 結構和少量的 BCC 相,後續將粉末於 1000 ºC 溫度下進行不同持溫時間的退火熱處理,並探討其相變化行為及穩定態時之材料性質。在1000 ℃退火後, Al0.5CoCrFeNi2Ti0.5 合金粉末轉變為固溶體 FCC 基體,有少量 BCC 析出物,其中BCC相經歷有序化過程。10-60 µm合金粉末的初始硬度為 5.329 GPa,經退火 12 小時後呈現出析出強化的效果,硬度顯著提升20%達 6.561 GPa。後續將合金粉末應用於大氣電漿熱噴塗製程,透過控制噴塗參數,調整工作電流從 500 A增加到750 A來改變功率,隨著工作電流的上升,合金塗層的維克氏硬度呈現從 285.3 到 396.7 HV0.3 的增加趨勢。同時,更加利用冷噴塗技術對碳鋼和鋁合金 AA 6061 進行冷噴塗塗層,獲得的硬度為 426.6 HV0.3,比熱噴塗塗層高約 10%,冷噴塗技術中的機械鎖定效應,使冷噴塗塗層與AA 6061基板間的結合強度與碳基板者。經研究指出,透過噴塗過程中的能量控制,可達多元化的應用價值,如冷噴塗與熱噴塗過程使用的噴塗壓力、電漿功率、粉末顆粒的大小等。電漿噴塗塗層在 600 ºC、800 ºC 和 1000 ºC 下熱處理 2 小時表明,析出相之晶體結構由無序 BCC相 轉變為有序 BCC相,同時 FCC主 峰的強度逐漸增加。其中,經800 ºC熱處理後,700 A工作電流所製備之合金塗層硬度由372 HV0.3上升至551 HV0.3,塗層的硬度增加了約48%,塗層硬度的上升與其耐磨性質的表現成正比。本篇研究指出Al0.5CoCrFeNi2Ti0.5高熵合金粉末特性,由於鈦元素的添加,析出強化顯著地使粉末及其塗層的硬度和耐磨性上升,藉此透過不同噴塗技術與噴塗參數,進而調控合金塗層耐磨性,提供全面性的製程控制與性能表現。


Adding titanium to Al0.5CoCrFeNi2 improved its mechanical properties, specifically for the hardness and wear resistance. Using gas atomization, we prepared high-entropy (HEA) alloy powders of Al0.5CoCrFeNi2Ti0.5. For further analysis and coating application processes, sieved powders with particle sizes of 10-60 µm and 60-120 µm gas-atomized powders were chosen. A spherical shape and uniform element distribution were observed in the as-obtained powders. The powders exhibited a minor metastable BCC phase along with an initial FCC structure. Various durations of annealing at 1000 oC were used to characterize the stable state properties of as-atomized powders. As a result of annealing, Al0.5CoCrFeNi2Ti0.5 kept a solid-solution FCC matrix with minor BCC precipitates, in which metastable BCC transformed into ordered BCC. The hardness of as-atomized group 10-60 µm powder was 5.3 GPa, while the annealed powder for 12 hours was 6.5 GPa which is approximately 20% increase in hardness due to precipitation strengthening.
In plasma sprayed power, the power was varied by increasing current from 500 to 750 A. Increasing the current from 500 to 750 A increased the hardness of plasma-sprayed coatings from 285.3 to 396.7 HV0.3. For cold spraying, both carbon steel and aluminum alloy AA 6061 were sprayed and studied. Mechanical locking effect raised bonding strength in cold-sprayed AA 6061 compared to carbon substrate. Compared to plasma-sprayed coatings, the hardness obtained was 426.6 HV0.3. Plasma power and particle size effect influence properties of plasma-sprayed coating. Plasma sprayed coatings heat treated for 2 hours at 600 ºC, 800 ºC and 1000 ºC showed that the precipitates transformed from disordered BCC phase into ordered BCC phase, while the intensity of the major FCC peaks increased. The coating prepared with 700 A possesses 372 HV0.3 hardness and increased to 551 HV0.3 after heat treatment at 800 ºC which is increased by approximately 48%. The increase of hardness is directly proportional to the wear resistance of the coatings at high spraying power. In this study, properties of Al0.5CoCrFeNi2Ti0.5 HEA powders were discussed and analyzed with the phase transformation. Heat treatments were carried out on HEA coatings, highlighting their suitability for use in a wide variety of wear resistance applications and this due precipitate strengthening played their in hardness and wear resistance.

ACKNOWLEDGEMENT i ABSTRACT iii List of Figures vii 1.Introduction 1 1.1 Background 1 1.2 Statement of the problem 2 1.3 Objective of the research 2 1.4 Thesis Outline 3 2. Literature Review 5 2.1 Introduction to high entropy alloys 5 2.2 Four high entropy alloys core effects 6 2.2.1 High entropy effect 6 2.2.2 Severe lattice distortion 6 2.2.3 Sluggish diffusion 7 2.2.4 Cocktail effect 8 2.3 Phase formation in high entropy alloys 9 2.3.1 Solid solution formation in high entropy alloys 9 2.3.2 Valence electron concentration in high entropy alloys 12 2.5 Preparation of high entropy alloys by casting 14 2.6 Surface coatings 15 2.6.1 Atmospheric plasma spray process 15 2.6.2 Cold spray 16 2.7.1 Blending 21 2.7.2 Arc melting followed by mechanical milling 21 2.7.3 Mechanically alloyed powders 22 2.7.4 Inert gas atomization 23 2.8 Mechanical properties of thermal sprayed coatings 25 2.9 Heat treatment of thermal sprayed coatings 26 3. Experimental Methods 29 3.1 Introduction 29 3.2 Powder production process 29 2.2.1 Raw Al0.5CoCrFeNi2Ti0.5 powders 29 3.2.2 Annealed powder 30 3.3 Preparation of plasma-sprayed Al0.5CoCrFeNi2Ti0.5 coatings 30 3.3.1 APS sprayed coatings 30 3.3.2 Cold sprayed coatings 31 3.3.3 Heat treatment 32 3.4 Characterization 32 3.4.1 Microstructural characterization 32 3.4.2 Phase structure 33 3.4.3 Hardness 35 3.4.4 Adhesive strength test 35 3.4.5 Wear resistance 36 4. Results and Discussion 37 4.1 Thermodynamic calculation of Al0.5CoCrFeNi2Ti0.5 high entropy alloy 37 4.2 Characterization of the gas atomized Al0.5CoCrFeNi2Ti0.5 powders 38 4.4 As-sprayed atmospheric plasma sprayed coatings 46 4.5 Cold sprayed Coatings 51 4.6 Heat treated plasma sprayed coatings 55 4.6.1 Phase structure and microstructural characterization 55 4.6.2 Hardness of the heat treated coatings 58 4.6.3 Wear resistance 60 5. Conclusions 65 6. Future Work 66 References 67 List of Published Papers 81

[1] J.-W.Yeh, S.-K. Chen, S.- J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, "Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes," Adv. Eng. Mater., vol. 6, no. 5, pp. 299–303, 2004.
[2] J.-W.Yeh, "Recent progress in high-entropy alloys," Ann. Chim. Sci. des Matériaux, vol. 31, no. 6, pp. 633–648, 2006.
[3] G.Muthupandi, K.R. Lim, Y.-S.Na, and J. Park, "Pile-up and sink-in nanoindentation behaviors in AlCoCrFeNi multi-phase high entropy alloy," Mater. Sci. Eng. A, vol. 696, pp. 146–154, 2017,
[4] S.Uporov, V.Bykov, S.Pryanichnikov, A.Shubin, and N.Uporova, " Effect of synthesis route on tructure and properties of AlCoCrFeNi high-entropy alloy," Intermetallics, vol. 83, pp. 1-8, 2017.
[5] Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen Z. Wang, J. Jie Z. Cao, H. Ruan, and T. Li, "A promising new class of high-temperature alloys: Eutectic high-entropy alloys," Sci. Rep., vol. 4, pp. 1–5, 2014.
[6] H. Zhang, Y. Pan, and Y.- Z. He, "Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding," Mater. Des., vol. 32, no. 4, pp. 1910–1915, 2011.
[7] W. Guo, N. Ding, G. Liu, C. Jing, H. Xu, L. Liu, N. Xu, X. Wu, J. He, and F. Zairi, "Microstructure evolution of a multi-track AlCoCrFeNi high entropy alloy coating fabricated by laser cladding," Mater. Charact., vol. 184, pp 1-11, 2022.
[8] A. S. M. Ang, C. C. Berndt, M.L. Sesso, A. Anupam, S. Praveen, S.Kottada and B.S.Murty, "Plasma-Sprayed High Entropy Alloys: Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi," Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 46, no. 2, pp. 791–800, 2015.
[9] A. Anupam, S. Kumar, N. M. Chavan, B. S. Murty, and R. S. Kottada, "First report on cold-sprayed AlCoCrFeNi high-entropy alloy and its isothermal oxidation,” J. Mater. Res., vol. 34, no. 5, pp. 796–806, 2019
[10] K.-C.Cheng, J.-H.Chen, S.Stadler, andS.-H.Chen, “Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process,” Appl. Surf. Sci., vol. 478, pp. 478–486, 2019.
[11] J. -T. Liang, K.- C. Cheng, and S.-H. Chen, “Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders,” J. Alloys Compd., vol. 803, pp. 484–490, 2019.
[12] J.-T. Liang , K.-Cheng, Y.-C. Chen, S.-M. Chiu, C. Chiu, J.-W.Lee S.-H. Chen “Comparisons of plasma-sprayed and sputtering Al0.5CoCrFeNi2 high-entropy alloy coatings,” Surf. Coatings Technol., vol. 403, p. 126411, 2020.
[13] W. Kai, F.P. Cheng, F.C. Chien, Y.R. Lin, D. Chen, J.J. Kai, C.T. Liu, and C.J. Wang,
“The oxidation behavior of a Ni2FeCoCrAl0.5 high-entropy superalloy in O2-containing environments,” Corros. Sci., vol. 158, 108093, 2019.
[14] T.T. Shun, C.H. Hung, and C.F.Lee, “The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700 °C,” J. Alloys Compd., vol. 495, no. 1, pp. 55–58, 2010.
[15] X. Chen, W. Xie, J. Zhu, Z. Wang, Y. Wang, Y. Ma, M. Yang, W. Jiang, H. Yu Y. Wu, and X. Hui, “Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy,” Intermetallics, vol. 128, 2020, p. 107024, 2021.
[16] B. Cantor, I. T. H. Chang, P. Knight, and A. J. B.Vincent, “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng. A, vol. 375–377, pp. 213–218, 2004.
[17] M.-H.Tsai and J.-W.Yeh, “High-entropy alloys: A critical review,” Mater. Res. Lett., vol. 2, no. 3, pp. 107–123, 2014.
[18] J.-W.Yeh, “Alloy design strategies and future trends in high-entropy alloys,” JOM, vol. 65, no. 12, pp. 1759–1771, 2013.
[19] Y. Zhang, T.T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmene, Peter K. Liaw, and Zhao Ping Lu, “Microstructures and properties of high-entropy alloys,” Prog. Mater. Sci., vol. 61, pp. 1–93, 2014.
[20] K.-Y.Tsai, M.-H.Tsai, and J.-W.Yeh, “Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys,” Acta Mater., vol. 61, no. 13, pp. 4887–4897, 2013.
[21] Y. J. Zhou, Y. Zhang, T. N.Kim, and G. L.Chen, “Microstructure characterizations and strengthening mechanism of multi-principal component AlCoCrFeNiTi0.5 solid solution alloy with excellent mechanical properties,” Mater. Lett., vol. 62, no. 17–18, pp. 2673–2676, 2008.
[22] Y.- J. Zhou, Y. Zhang, F.- J.Wang, and G.- L.Chen, “Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1−x solid-solution alloys,” Appl. Phys. Lett., vol. 92, no. 24, p. 241917, 2008
[23] S. Ranganathan, “Alloyed pleasures: Multimetallic cocktails,” Curr. Sci., vol. 85, no. 10, pp. 1404–1406, 2003.
[24] X.Yang and Y.Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys,” Mater. Chem. Phys., vol. 132, no. 2–3, pp. 233–238, 2012.
[25] A.Takeuchi and A. Inoue, “Quantitative evaluation of critical cooling rate for metallic glasses,” Mater. Sci. Eng. A, vol. 304–306, pp. 446–451,2001.
[26] Z. X.Wu, M. J. He, C. S. Feng, T. L.Wang, M. Z. Lin, and W. B. Liao, “Effects of annealing on the microstructures and wear resistance of CoCrFeNiMn high-entropyalloy coatings,” J. Therm. Spray Technol., 31, pp.1244–1251, 2022.
[27] S. Guo, C. Ng, J. Lu, and C. T. Liu, “Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys,” J. Appl. Phys, vol. 109, 103505, 2011.
[28] J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, and S.-J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements,” Mater. Chem. Phys., vol. 103, no. 1, pp. 41–46, 2007.
[29] R. Chen, G. Qin, H. Zheng, L. Wang, Y. Su, Y. Chiu, H. Ding, J. Guo, and H. Fu,
“Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility,” Acta Mater., vol. 144, pp. 129–137, 2018.
[30] W. H. Liu, T.Yang, and C. T.Liu, “Precipitation hardening in CoCrFeNi-based high entropy alloys,” Mater. Chem. Phys., vol. 210, pp. 2–11, 2018.
[31] W.-R.Wang, W.-L.Wang, and J.-W.Yeh, “Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures,” J. Alloys Compd., vol. 589, pp. 143–152, 2014.
[32] W.-R.Wang, W.-L.Wang, S.-C.Wang, Y.-C.Tsai, C.-H.Lai, andJ.-W.Yeh, “Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys,” Intermetallics, vol. 26, pp. 44–51, 2012.
[33] K.B.Zhang, Z.Y.Fu, J.Y.Zhang, W.M.Wang, S.W.Lee, and K.Niihara, “Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying,” J. Alloys Compd., vol. 495, no. 1, pp. 33–38, 2010.
[34] Y.J.Zhou, Y.Zhang, Y.LWang, and G.L.Chen, “Solid solution alloys of AlCoCrFeNi Tix with excellent room-temperature mechanical properties,” Appl. Phys. Lett., vol. 90, no. 18, 2007.
[35] A.Inoue and A.I.Takeuchi, “Classification of Bulk Metallic Glasses by Atomic Size Difference , Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element,” Mater. Trans., vol. 46, no. 12, pp. 2817–2829, 2005.
[36] K.Zhang and Z.Fu, “Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAl high-entropy alloys,” Intermetallics, vol. 22, pp. 24–32, 2012.
[37] X.Guo, Y.Guo, and L.Yin, “Valence electron structures and mechanical and thermal properties of single-phase refractory high-entropy alloys” J. Phys. Chem, vol.125, 37, pp. 20503–20511, 2021.
[38] G.Qin, W.Xue, C.Fan, R.Chen, L.Wang, Y. Su, H. Ding and J.Guo, “Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100-xCox high-entropy alloys,” Mater. Sci. Eng. A, vol. 710, pp. 200–205, 2018.
[39] A.Meghwal, A.Anupam, B. S.Murty, C. C.Berndt, R. S.Kottada, and A. S. M.Ang, “Thermal Spray High-Entropy Alloy Coatings: A Review,” J. Therm. Spray Technol., vol. 29, no. 5, pp. 857–893, Jun.2020, doi: 10.1007/s11666-020-01047-0.
[40] M.Löbel, T.Lindner, T.Mehner, and T.Lampke, “Influence of Titanium on Microstructure, Phase Formation and Wear Behaviour of AlCoCrFeNiTix High-Entropy Alloy,” Entropy, vol. 20, no. 7, p. 505, 2018.
[41] M.Löbel, T.Lindner, T.Mehner, and T.Lampke, “Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOF,” Coatings, vol. 7, no. 9, p. 144, 2017.
[42] D. Kong, J. Guo, R. Liu, X. Zhang, Y. Song, Z. Li, F. Guo, X. Xing, Y. Xu, and W. Wang, “Effect of remelting and annealing on the wear resistance of AlCoCrFeNiTi0.5 high entropy alloys,” Intermetallics, vol. 114, 2019.
[43] D.Jain, V.Surdasan, and A.K.Tyagi, “Synthesis of Metallic Materials by Arc Melting Technique,” in Handbook on Synthesis Strategies for Advanced Materials, 2021, pp. 197–213.
[44] M.Grimm, S.Conze, L. M.Berger, G.Paczkowski, R.Drehmann, and T.Lampke, “Changes in the Coating Composition Due to APS Process Conditions for Al2O3-Cr2O3-TiO2 Ternary Powder Blends,” J. Therm. Spray Technol., vol. 30, no. 1–2, pp. 168–180, 2021.
[45] S. Yin, W. Li, B. Song, X. Yan, M. Kuang, Y. Xu, K. Wen, and R. Lupoi, “Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying,” J. Mater. Sci. Technol., vol. 35, no. 6, pp. 1003–1007, 2019.
[46] M.Chen, L.Lan, X.Shi, H.Yang, M.Zhang, and J.Qiao, “The tribological properties of Al0.6CoCrFeNi high-entropy alloy with the σ phase precipitation at elevated temperature,” J. Alloys Compd., vol. 777, pp. 180–189, 2019.
[47] M.Prystay, P.Gougeon, and C.Moreau, “Structure of Plasma-Sprayed Zirconia CoatingsTailored by Controlling the Temperature and Velocity of the Sprayed Particle,” J. Therm. Spray Technol. vol.10, pp.67–75, 2001.
[48] W.-L.Hsu, H.Murakami, J.-W.Yeh, A.-C.Yeh, and K.Shimoda, “On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating,” Surf. Coatings Technol., vol. 316, pp. 71–74,2017.
[49] R.Sobhanverdi and A.Akbari, “Porosity and microstructural features of plasma sprayed Yttria stabilized Zirconia thermal barrier coatings,” Ceram. Int., vol. 41, no. 10, pp. 14517–14528, 2015.
[50] X.C.Zhang, B. S.Xu, F. Z.Xuan, H.D.Wang, Y.X.Wu, and S.T.Tu, “Statistical analyses of porosity variations in plasma-sprayed Ni-based coatings,” J. Alloys Compd., vol. 467, no. 1–2, pp. 501–508, 2009.
[51] H.Assadi, F.Gärtner, T.Stoltenhoff, and H.Kreye, “Bonding mechanism in cold gas spraying,” Acta Mater., vol. 51, no. 15, pp. 4379–4394, 2003.
[52] F.-J.Wei, B.-Y.Chou, K.-Z.Fung, S.-Y.Tsai, and C.-W.Yang, “Influence of Powder Plasticity on Bonding Strength of Cold-Sprayed Copper Coating,” Coatings, vol. 12, no. 8, p. 1197, 2022.
[53] M.Grujicic, C.L.Zhao, W.S.DeRosset, and D.Helfritch, “Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process,” Mater. Des., vol. 25, no. 8, pp. 681–688, 2004.
[54] H.Singh, M.Kumar, and R.Singh, “An overview of various applications of cold spray coating process,” Mater. Today Proc., vol. 56, pp. 2826–2830, 2022.
[55] Y.Zou, “Cold Spray Additive Manufacturing: Microstructure Evolution and Bonding Features,” Accounts Mater. Res., vol. 2, no. 11, pp. 1071–1081, 2021.
[56] F.Gärtner, T.Schmidt, T.Stoltenhoff, and H.Kreye, “Recent developments and potential applications of cold spraying,” Adv. Eng. Mater., vol. 8, no. 7, pp. 611–618, 2006.
[57] M.Löbel, T.Lindner, C.Kohrt, and T.Lampke, “Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying,” 2017 IOP Conf. Ser.: Mater. Sci. Eng. vol.181 p.012015.
[58] V.Shivam, Y.Shadangi, J.Basu, and N. K.Mukhopadhyay, “Evolution of phases, hardness and magnetic properties of AlCoCrFeNi high entropy alloy processed by mechanical alloying,” J. Alloys Compd., vol. 832, p.154826, 2020.
[59] U.Fritsching andV.Uhlenwinkel, “Hybrid Gas Atomization for Powder Production,” in Powder Metallurgy, Katsuyoshi Kondoh, Ed. 2011, pp. 99–125.
[60] P.Ding, A.Mao, X.Zhang, X.Jin, B.Wang, M.Liu, and X.Gu, “Preparation, characterization and properties of multicomponent AlCoCrFeNi2.1 powder by gas atomization method,” J. Alloys Compd., vol. 721, pp. 609–614, 2017.
[61] C. C.Yang, J. L.Hang Chau, C. J.Weng, C. S.Chen, and Y. H.Chou, “Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process,” Mater. Chem. Phys., vol. 202, pp. 151–158, 2017.
[62] L. M.Wang, C.-C.Chen, J.-W.Yeh, and S. T.Ke, “The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySi zAlTi0.2 high-entropy alloys,” Mater. Chem. Phys., vol. 126, no. 3, pp. 880–885, 2011.
[63] S.Praveen, B. S.Murty, and R. S.Kottada, “Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys,” Mater. Sci. Eng. A, vol. 534, pp. 83–89, 2012.
[64] K. S.Lee, B.Bae, J.Kang, K. R.Lim, and Y. S.Na, “Multi-phase refining of an AlCoCrFeNi high entropy alloy by hot compression,” Mater. Lett., vol. 198, pp. 81–84, 2017.
[65] M.-H.Chuang, M.-H.Tsai, W. -R.Wang, S.- J.Lin, and J.-W.Yeh, “Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys,” Acta Mater., vol. 59, no. 16, pp. 6308–6317, 2011.
[66] H.Kumar, G. A.Bhaduri, S.G. K.Manikandan, M.Kamaraj, and S.Shiva, “Influence of Annealing on Microstructure and Tribological Properties of AlCoCrFeNiTi High Entropy Alloy Based Coating,” Met. Mater. Int., vol. 32, pp. 112–121, 2022.
[67] R. S.Kiplangat, T.-T.Lin, N. G.Kipkirui, and S.-H.Chen, “Microstructure and Mechanical Properties of the Plasma-Sprayed and Cold-Sprayed Al0.5CoCrFeNi2Ti0.5 High-Entropy Alloy Coatings,” J. Therm. Spray Technol., vol.31, pp, 1207–1221, 2022.
[68] K.Akhtar, S.A.Khan, S.B.Khan, and A.Asiri, “Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. Sharma, S. (eds),” in Handbook of Materials Characterization., 2018, pp. 113–145.
[69] G.Artioli, “X-ray Diffraction (XRD). In: Gilbert, A.S. (eds) Encyclopedia of Geoarchaeology. Encyclopedia of Earth Sciences Series,” in Encyclopedia of Geoarchaeology. Encyclopedia of Earth Sciences Series, 2017, pp. 1019–1025.
[70] R.Huang, W.Ma, and H.Fukanuma, “Development of ultra-strong adhesive strength coatings using cold spray,” Surf. Coat. Technol., vol. 258, pp. 832–841, 2014.
[71] G.P.León, V.E.Lamberti, R. D.Seals, T.M.Abu-Lebdeh, and S.A.Hamoush, “Gas Atomization of Molten Metal: Part I. Numerical Modeling Conception,” Am. J. Eng. Appl. Sci., vol. 9, no. 2, pp. 303–322, 2016.
[72] J.Liang, K.Cheng, and S.Chen, “Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders,” J. Alloys Compd., vol. 803, pp. 484–490, 2019.
[73] S.-M. Chiu, T.-T. Lin, S.K.Rotich, N.G. Kipkirui, Y._Q Lin, J.-T.Liang, and S.-H.Chen,
“Investigation of phase constitution and stability of gas-atomized Al0.5CoCrFeNi2 high-entropy alloy powders,” Mater. Chem. Phys., vol. 275, p. 125194, 2022.
[74] S.Jiang, Z.Lin, H.Xu, and Y.Sun, “Studies on the microstructure and properties of AlxCoCrFeNiTi1-x high entropy alloys,” J. Alloys Compd., vol. 741, pp. 826–833, 2018.
[75] Z.Xu, D. Y.Li, and D. L.Chen, “Effect of Ti on the wear behavior of AlCoCrFeNi high-entropy alloy during unidirectional and bi-directional sliding wear processes,” Wear, vol. 476, p. 203650, 2021.
[76] J. Lehtonen, Y.Ge, N.Ciftci, O.Heczko, V.Uhlenwinkel, and S.-P.Hannula, “Phase structures of gas atomized equiatomic CrFeNiMn high entropy alloy powder,” J. Alloys Compd., vol. 827, p. 154142, 2020.
[77] J.Liu, H.Liu, P.Chen, and J.Hao, “Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding,” Surf. Coatings Technol., vol. 361, pp. 63–74, 2019.
[78] M.Wu, K.Chen, Z.Xu, and D. Y.Li, “Effect of Ti addition on the sliding wear behavior of AlCrFeCoNi high-entropy alloy,” Wear, vol. 462–463, p. 203493, 2020.
[79] G.-S.Ham, Y.-K.Kim, Y. S.Na, and K.-A.Lee, “Effect of Ti Addition on the Microstructure and High-Temperature Oxidation Property of AlCoCrFeNi High-Entropy Alloy,” Met. Mater. Int., vol. 27, no. 1, pp. 156–165, 2021.
[80] E.Garcia, H.Lee, and S.Sampath, “Phase and microstructure evolution in plasma sprayed Yb2Si2O7 coatings,” J. Eur. Ceram. Soc., vol. 39, no. 4, pp. 1477–1486, 2019.
[81] J.Luo, N.Shi, Y.-Z.Xing, C.Jiang, and Y.Chen, “Effect of Arc Power on the Wear and High-temperature Oxidation Resistances of Plasma-Sprayed Fe-based Amorphous Coatings,” High Temp. Mater. Process., vol. 38, no. 2019, pp. 639–646, 2019.
[82] C.Lee and J.Kim, “Microstructure of Kinetic Spray Coatings: A Review,” J. Therm. Spray Technol., vol. 24, no. 4, pp. 592–610, 2015.
[83] H.-T.Wang, C.-J.Li, G.-J.Yang, C.-X.Li, Q.Zhang, and W.-Y.Li, “Microstructural Characterization of Cold-Sprayed Nanostructured FeAl Intermetallic Compound Coating and its Ball-Milled Feedstock Powders,” J. Therm. Spray Technol., vol. 16, no. 5–6, pp. 669–676, 2007.
[84] A.Chaudhuri, Y.Raghupathy, D.Srinivasan, S.Suwas, andC.Srivastava, “Microstructural evolution of cold-sprayed Inconel 625 superalloy coatings on low alloy steel substrate,” Acta Mater., vol. 129, pp. 11–25, 2017, doi: 10.1016/j.actamat.2017.02.070.
[85] K.Kim, S.Kuroda, M.Watanabe, R.Huang, H.Fukanuma, and H.Katanoda, “Comparison of Oxidation and Microstructure of Warm-Sprayed and Cold-Sprayed Titanium Coatings,” J. Therm. Spray Technol., vol. 21, pp. 550–560, 2012.
[86] H.-T.Wang, C.-J.Li, G.-J.Yang, and C.-X.Li, “Effect of heat treatment on the microstructure and property of cold-sprayed nanostructured FeAl/Al2O3 intermetallic composite coating,” Vacuum, vol. 83, no. 1, pp. 146–152, 2008.
[87] L.Shaw, H.Luo, J.Villegas, and D.Miracle, “Thermal stability of nanostructured Al93Fe3Cr2Ti2 alloys prepared via mechanical alloying,” Acta Mater., vol. 51, no. 9, pp. 2647–2663, 2003.
[88] D.V.Hushchyk, A. I.Yurkova, V.V.Cherniavsky, I. I.Bilyk, and S. O.Nakonechnyy, “Nanostructured AlNiCoFeCrTi high-entropy coating performed by cold spray,” Appl. Nanosci., vol. 10, no. 12, pp. 4879–4890, 2020.
[89] T.Hussain, D. G.McCartney, and P. H.Shipway, “Bonding between aluminium and copper in cold spraying: story of asymmetry,” Mater. Sci. Technol., vol. 28, no. 12, pp. 1371–1378, Dec.2012, doi: 10.1179/1743284712Y.0000000051.
[90] M. R.Rokni, S. R.Nutt, C. A.Widener, V. K.Champagne, and R. H.Hrabe, “Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray,” J. Therm. Spray Technol., vol. 26, no. 6, pp. 1308–1355, 2017.
[91] Y.Li, X.Wang, S.Yin, andS.Xu, “Influence of Particle Initial Temperature on High Velocity Impact Process in Cold Spraying,” Procedia Environ. Sci., vol. 12, pp. 298–304, 2012.
[92] S.Yin et al., “Cold spray additive manufacturing and repair: Fundamentals and applications,” Addit. Manuf., vol. 21, pp. 628–650, 2018.
[93] R. Drehmann, T. Grund, T. Lampke, B. Wielage C. Wüstefeld, M. Motylenko, and D. Rafaja, “Essential Factors Influencing the Bonding Strength of Cold-Sprayed Aluminum Coatings on Ceramic Substrates,” J. Therm. Spray Technol., vol. 27, no. 3, pp. 446–455, 2018.
[94] C.Huang, W.Li, Y.Xie, M.-P.Planche, H.Liao, and G.Montavon, “Effect of Substrate Type on Deposition Behavior and Wear Performance of Ni-Coated Graphite/Al Composite Coatings Deposited by Cold Spraying,” J. Mater. Sci. Technol., vol. 33, no. 4, pp. 338–346, 2017.
[95] J. K.Xiao, H.Tan, Y. Q.Wu, J.Chen, and C.Zhang, “Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying,” Surf. Coatings Technol., vol. 385, p. 125430, 2020.
[96] L.Wang, J. C.Fang, Z. Y.Zhao, and H. P.Zeng, “Application of backward propagation network for forecasting hardness and porosity of coatings by plasma spraying,” Surf. Coatings Technol., vol. 201, no. 9-11 pp. 5085–5089, 2007.
[97] D.Thirumalaikumarasamy, K.Shanmugam, and V.Balasubramanian, “Influences of atmospheric plasma spraying parameters on the porosity level of alumina coating on AZ31B magnesium alloy using response surface methodology,” Prog. Nat. Sci. Mater. Int., vol. 22, no. 5, pp. 468–479, 2012.
[98] A.Meghwal, A. Anupam, V, Luzin, C.Schulz, C.Hall, B.S.Murty, R.S.Kottada, C.C.Berndt, A.S.M.Ang, “Multiscale mechanical performance and corrosion behaviour of plasma sprayed AlCoCrFeNi high-entropy alloy coatings,” J. Alloys Compd., vol. 854, p. 157140, 2021.
[99] A.Meghwal, A. Anupam, V, Luzin, C.Schulz, C.Hall, B.S.Murty, R.S.Kottada, C.C.Berndt, A.S.M.Ang, “Tribological and corrosion performance of an atmospheric plasma sprayed AlCoCr0.5Ni high-entropy alloy coating,” Wear, vol. 506–507, p. 204443, 2022.
[100] J. M.Wu, S. J.Lin, J. W.Yeh, S. K.Chen, Y. S.Huang, and H. C.Chen, “Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content,” Wear, vol. 261, no. 5–6, pp. 513–519, 2006.
[101] T.Li, Y.Liu, B.Liu, W.Guo, and L.Xu, “Microstructure and wear behavior of FeCoCrNiMo0.2 high entropy coatings prepared by air plasma spray and the high velocity oxy-fuel spray processes,” Coatings, vol. 7, no. 9, pp. 5–8, 2017.

QR CODE