Author: |
黃柏誠 PO-CHENG HUANG |
---|---|
Thesis Title: |
類神經網路與鑑別分析在中小企業貸款違約預警模型之實證研究 Artificial Neural Network and Discriminate Analysis on the Forecast Model of Corporate Loan Default |
Advisor: |
徐俊傑
Chiun-Chieh Hsu |
Committee: |
賴源正
Yuan-Cheng Lai 黃世禎 Shih-Chen Huang |
Degree: |
碩士 Master |
Department: |
管理學院 - 資訊管理系 Department of Information Management |
Thesis Publication Year: | 2009 |
Graduation Academic Year: | 97 |
Language: | 中文 |
Pages: | 73 |
Keywords (in Chinese): | 信用風險 、企業貸款違約 、倒傳遞類神經網路 、鑑別分析法 、預測模型 、因素分析 |
Keywords (in other languages): | Credit Risk, Enterprise Loan Default, Back-propagation Artificial Neural Network, Discriminate Analysis, Factor Analysis, Forecast Model |
Reference times: | Clicks: 471 Downloads: 7 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
本研究採倒傳遞類神經網路(Back-propagation Artificial Neural Network)及鑑別分析(Discriminate Analysis)的方法,以810家中小企業為樣本,檢視造成中小企業信用危機的財務與非財務變數資訊,經由因素分析(Factor Analysis)萃取出共同因素後,做為倒傳遞類神經網路及鑑別分析法的輸入變數,建立企業貸款違約預警模型,藉以提供企業量化信用風險之依據,將有助於銀行鑑別客戶信用之良莠進而降低呆帳發生之機率。本研究還比較類神經網路及鑑別分析所建構之企業貸款違約預測模型,何者具較高之預測能力。
經由五組訓練樣本與測試樣本的交叉驗證結果,類神經網路預測模型無論在整體正確率或型 I 錯誤率皆優於以鑑別分析法所建立之違約預測模型。
In this thesis, from 810 small and medium sized enterprises, we first employ the Factor Analysis (FA) to extract the financial and non-financial factors causing the credit risks of enterprises. These factors are then treated as the input variables of the Back-propagation Artificial Neural Network model (BPN) and Discriminate Analysis model (DA) in order to build up the forecast models of enterprise loan default. The models can assist the bank to evaluate the credit risks of enterprises, which can decrease the probability of bad debt. Moreover, we also compare the forecast capabilities of the BPN and the DA models.
The experimental results using five group samples by cross-validation method show that accuracy rates and type I error rates of the BPN model always outperform those of the DA model. Therefore, we conclude that the BPN model is more suitable than the DA model on predicting the corporate loan default.
英文文獻:
[1] Altman, E. I. and Loris, B.:A Financial Early Warning System For Over-the-Counter Broker-Dealers, Journal of Finance, Vol. 31, No. 4, pp. 1201-1217, 1976.
[2] Altman, E. I., Macro, G. and Varetto, F.:Corporate Distress Diagnosis: Comparisons Using Linear Discriminate Analysis and Neural Networks, Journal of Banking and Finance, Vol. 18, No. 3, pp. 505-529, 1994.
[3] Beaver, W.:Financial Ratio as Predictors of Failure, Journal of Accounting Research, Empirical Research in Accounting: Selected Studies, pp. 71-111, 1996.
[4] Blum, M.:Failing Company Discriminate Analysis, Journal of Accounting Research, Vol. 12, No. 1, pp. 1-25, 1974.
[5] Collins, R. A.:An Empirical Comparison of Bankruptcy Prediction Models, Financial Management, Vol. 9, No. 2, pp. 52-57, 1980.
[6] Koh, H. C., Tan, S. S.:A neural network approach to the prediction of going concern status, Accounting and Business Research, Vol. 21, pp. 211-216, 1999.
[7] Odom, M.D. and R., Sharda:A neural networks for bankruptcy prediction, IEEE INNS International Joint Conference on Neural Networks, Vol. 2, pp. 163-168, 1990.
[8] Piramuthu, S.:Financial Credit-Risk Evaluation with Neural and Neurofuzzy Systems, European Journal of Operational Research, Vol. 112, No. 2, pp. 310-321, 1999.
[9] Zhang, G., Hu, M. Y., Patuwo, P. E. and Indro, D. C.:Artificial Neural Networks in Bankruptcy Prediction: General Framework and Cross-Validation Analysis, European Journal of Operational Research, Vol. 116, No. 1, pp. 16-32,1999.
中文文獻:
[10] 陳肇榮:運用財務比率預測企業財務危機之實證研究,政治大學企業管理研究所博士論文,1983。
[11] 盧靜怡:企業經營績效排名之預測—灰色關聯分析與類神經網路之應用:台灣科技大學資訊管理學系碩士論文,2001。
[12] 楊浚泓:考慮財務操作與合併報表後之財務危機預警模式,中央大學財務管理研究所碩士論文,2000。
[13] 黃志力:企業財務危機預測-以類神經網路建構產業別預警模型,中山大學企業管理學系碩士論文,2007。
[14] 郭瓊宜:類神經網路在財務危機預警模式之應用,淡江大學管科學研究所碩士論文,1993。
[15] 萬智傑:台灣中小企業之財務危機預警模型、信用評等與巴塞爾協定資本計提,東吳大學企業管理學系碩士論文,2007。
[16] 葉春有:國內中小企業貸款違約預測模式之研究-以某商業銀行之授信戶為例,實踐大學企業管理研究所碩士論文,2004。
[17] 官旻慧:以財務比率衡量公司信用風險,世新大學財務金融學研究所碩士論文,2005。
[18] 陳銘泰:銀行放款風險雙重預警模式之建立-以電子業為例,實踐大學企業管理研究所碩士論文,2005。
[19] 郭敬和:商業銀行授信評等之研究-類神經模糊理論之應用,靜宜大學會計學系研究所碩士論文,2002。
[20] 張勝春:模糊類神經在銀行授信決策之應用,朝陽科技大學財務金融學系碩士論文,2002。
[21] 戴育昇:不良債信評估研究,朝陽科技大學財務金融學系碩士論文,2006。
[22] 周文賢:多變量統計分析,貝塔/智勝出版,2002。
[23] 羅華強:類神經網路-Matlab的應用,清蔚科技出版,2001