簡易檢索 / 詳目顯示

研究生: 賴信良
Sin-liang Lai
論文名稱: 矽鍺基光電晶體與光接收積體電路設計與實現
Design and Implementation of SiGe-based phototransistors & Optical Receiving Integrated Circuits
指導教授: 劉政光
Cheng-kuang Liu
口試委員: 李三良
San-liang Lee
徐世祥
Shih-hsiang Hsu
周肇基
Chao-chi Chou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 99
中文關鍵詞: 光電晶體轉阻放大器自動增益控制放大器
外文關鍵詞: phototransistors, transimpedance amplifier, automatic gain control amplifier
相關次數: 點閱:242下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究應用於光通訊系統之積體電路元件,包含矽鍺發光晶片、矽鍺檢光晶片、可調式轉阻放大器與自動增益控制放大器,分別採用台積電(TSMC)之0.35μm SiGe 3P3M製程及0.18μm CMOS 1P6M製程來設計。
第一部份探討兩個主題,第一為矽鍺基發光晶片,我們利用電晶體之PN接面,與台積電0.35μm SiGe 3P3M製程中所提供的四種型號電晶體,以及修改接腳金屬線的寬度和兩種佈局方式來研究矽鍺發光晶片的發光特性。以型號lw062和一般型佈局方式有最佳的發光特性,以波長1150nm有最大光功率。第二為矽鍺基檢光晶片的設計,利用光電晶體的電流增益特性,來放大檢光電流,在紅光、藍光、綠光為光源下,以紅光接收效果最好。
第二部份為可調式增益轉阻放大器之設計與實現,使用台積電0.35μm SiGe 3P3M製程來實現電路,增益可調範圍41.52~55.1 dBΩ,在光檢測器之寄生電容250fF下操作時的-3dB頻寬為3.24~2.11 GHz,功率消耗在供應電壓3.3V下為29.99mW。
第三部份為光接收前端電路之模擬,使用台積電0.18μm CMOS 1P6M製程來設計電路。電路架構包含差動式輸出轉阻放大器以及自動增益控制放大器,模擬結果得到增益調整範圍63.9 ∼91.57 dBΩ,-3dB頻寬在光檢測器之寄生電容250fF下為1.75GHz,電路總功率消耗在供應電壓1.8V下為84.54mW。


In this thesis, a study is made of the integrated circuits for optical communication system, including the SiGe-based light emitting chip and photo detector chip, a tunable transimpedance amplifier, and automatic gain control amplifier. The integration circuits are designed using the TSMC 0.35μm SiGe 3P3M process and the 0.18μm CMOS 1P6M process, respectively.
In the first part, the SiGe-based light-emitting chips are studies. Using the PN junction of BJT, and the four types of BJTs provided by the TSMC 0.35μm SiGe 3P3M process, light-emitting chips are designed with several metal line widths and two kinds of layout. The design using model 062 and general layout has the biggest luminous power at the wavelength of 1150 microns. Moreover, the design of SiGe photo detector chips is studied. It is found that when the red light, green light, and blue light are used as the input light, the best performance is obtained for the red light.
In the second part, the design and implementation of a tunable transimpedance amplifier(TIA) is presented using the TSMC 0.35μm SiGe 3P3M process. The fabricated TIA exhibits a tunable gain from 41.52 to 55.1 dBΩ, a -3dB bandwidth of 3.24~2.11GHz for a photodiode input capacitance of 0.25pF. The power consumption is 29.99mW from a 3.3-V voltage supply.
The third part deals with the simulation of an optical receiving front-end circuit. It consists of a differential transimpedance amplifier and a automatic gain control amplifier. It is designed with the TSMC 0.18μm CMOS 1P6M process. Its simulation result exhibits a tunable gain from 63.9 to 91.57dBΩ, a -3dB bandwidth of 1.75GHz for a photodiode input capacitance of 0.25pf. The power consumption is 84.54mW from a 1.8-V voltage supply.

中文摘要................................................. I 英文摘要.................................................II 誌謝.................................................... IV 目錄.................................................... VI 第一章 緒論..............................................1 1.1 前言................................................1 1.2 研究動機............................................2 1.3內容簡介.............................................4 第二章 光通訊相關電路簡介..............................5 2.1 光通訊接收端電路架構簡介............................5 2.1.1 光檢測器........................................6 2.1.2轉阻放大器.......................................7 2.1.3限幅放大器.......................................9 2.1.4時脈資料回復電路................................11 2.2基本概念............................................12 2.2.1 雜訊分析.......................................12 2.2.2歸零與不歸零資料................................16 2.2.3眼圖............................................17 第三章 矽鍺基光電晶體發光與檢光機制研究與量測......18 3.1矽與鍺特性簡介........................................18 3.2發光機制..............................................20 3.2.1發光原理.........................................20 3.2.2半導體發光材料特性及效率.........................22 3.3復合機制..............................................24 3.4光電轉換基本原理......................................26 3.5光檢測器概要..........................................27 3.5.1光電晶體特性之簡介...............................30 3.6矽鍺發光晶片設計與實現................................31 3.6.1電路設計架構.....................................31 3.6.2矽鍺發光晶片量測.................................35 3.7光電晶體檢光電路量測..................................43 3.7.1光電晶體檢光晶片設計架構簡介.....................43 3.7.2光電晶體電流增益與特性曲線之量測.................45 3.7.3 LED為發光源的光功率量測.........................48 3.8討論與結論............................................53 第四章 增益可調式轉阻放大器之設計與量測.............55 4.1 轉阻放大器簡介.....................................55 4.1.1開迴路轉阻放大器(Open-Loop TIA) .................56 4.1.2回授型轉阻放大器(Feedback TIA) ..................58 4.2增益可調式轉阻放大器設計與實現......................60 4.2.1增益可調式轉阻放大器架構簡介...................60 4.2.2 Regulated Cascode (RGC)電路架構簡介.............62 4.2.3 Inductive peaking技術簡介......................63 4.2.4增益可調式轉阻放大器電路模擬....................65 4.2.5 增益可調式轉阻放大器量測方法與結果.............68 4.2.6 增益可調式轉阻放大器討論與比較.................71 第五章 具自動增益控制的光接收前端電路之模擬........73 5.1 光接收前端電路架構簡介.............................73 5.2光接收前端電路之分析...............................74 5.2.1 差動式輸出轉阻放大器架構分析..................74 5.2.2 自動增益控制放大器原理與分析..................75 5.2.3 自動增益控制放大器架構分析.....................77 5.3光接收前端電路之模擬結果............................79 5.3.1差動式輸出轉阻放大器模擬........................79 5.3.2自動增益控制放大器模擬..........................81 5.3.3具自動增益控制之光接收前端電路模擬..............83 5.3.4前端電路結果與討論..............................85 第六章 結論.........................................87 6.1總結...............................................87 6.2未來發展與展望.....................................88 參考文獻.................................................89 作者簡介.................................................92

[1] 鄭明哲,光通信, 全華科技圖書股份有限公司, 1985年3月.
[2] J. C, Palais, Fiber Optic Communications, chap 7、11, 台北市,東華書局, 民國八十九年.
[3] 趙福光, 光電積體電路現狀及未來展望, 光電資訊, 第6期pp.43-50, June 1990.
[4] 林清富, 矽半導體發光的可能性, 光訊第93期, pp.11-17,Dec. 2001.
[5] B. Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, 2003.
[6] 徐照夫, 光感測器及其使用法, 台北市, 全華書局, 民國八十年.
[7] 劉權德, 光電用轉阻放大器研製, 碩士論文, 國立清華大學, 2001.
[8] E. Sackinger and W. C. Fischer,“A 3-GHz 32-dB CMOS limiting amplifier for SONET OC-48 receivers,” IEEE Journal of Solid-State Circuits, vol.35.12, pp.1884-1888, Dec. 2000.
[9] 劉深淵,楊清淵, 鎖相迴路, 滄海書局, 民國九十五年十一月.
[10]D. A. Neamen, Semiconductor Physics & Devices, McGraw -Hill, 1998.
[11]S.M.Sze and Kwok K.Ng, Physics of Semiconductor Devices,
Wiley-Interscience,pp.603-604,2007.
[12]龔祖德,光通訊主動元組件導 論,(http://fiber.ee.ncku.edu.tw/FIBERLAB/ default.htm).
[13]D.A Neamen, Semiconductor physics & Device,Irwin,pp.67,
1998.
[14]蘇亭偉,奈米結構金氧矽發光二極體之特性研究,碩士論文,國立
台灣大學,June 2002.
[15]張安華, 光纖通訊與實習, 新文京開發出版股份有限公司,民國
九十四年九月.
[16]蔡亭林,矽鍺光電晶體與砷化鎵光電晶體之設計與特性分析,碩
士論文,國立中央大學,June 2004.
[17]盧明智、盧鵬任,感測器應用與線路分析,全華書局,2008.
[18]呂啟銘, 10Gb/s 光纖通訊系統接收端電路模擬實作與量測, 碩
士論文, 國立中央大學, 2005.
[19]S. M. Park and H.-J. Yoo,“1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications,” IEEE Journal of Solid-State Circuits, vol.39, no.1, pp.112-121, January 2004.
[20]H.-Y. Hwang and J.-C. Chien,“A CMOS tunable transimpedance amplifier,” IEEE Microwave and Wireless Components Letters, vol.16, no.12, pp.693-695, Dec. 2006.
[21]M. Li, B. Hayes-Gill and I. Harrison, “6GHz transimpedance
amplifier for optical sensing system in low-cost 0.35μm CMOS,”
IEEE Electronics Letters, vol.42, no.22, pp.1278-1279, Oct. 2006.
[22] B. Razavi, Design of Analog CMOS Integrated Circuits,
McGraw-Hill, 2001.
[23]S.-J. Sim, J. Park, and S. M. Park,“A 1.8V, 60dBΩ, 11GHz transimpedance amplifier with strong immunity to input parasitic capacitance,” IEEE ISCAS, pp.5483-5486, May 2006.
[24]S.-H. Kim, C.-U. Kam, and J.-H. Lee,“ Design of 2.5Gb/s
transimpedance amplifier using CMOS technologies,” IEEE
ICACT , pp.1825-1828, Feb. 2007.
[25]S. Galal and B. Razavi,“10-Gb/s limiting amplifier and laser/
modulator driver in 0.18-μm CMOS technology,”IEEE Journal of
Solid-State Circuits, vol.38, no.12, pp.2138-2146, Dec. 2003.
[26]R.G.Bozomitu and Vl,Cehan,“A Differential CMOS Automatic
Gain Control Amplifier” IEEE International Solid-State Circuits
Conference, Iasi,pp.1-4, July 2007.
[27] C.-F. Liao and S.-L. Liu,“A 10Gb/s CMOS AGC Amplifier with
3dB Dynamic Range for 10Gb Etherent”IEEE International
Solid-State Circuit Conference , San Francisco, CA,pp. 2092 –
2101,2006.
[28] C.-F. Liao and S.-L. Liu,“40 Gb/s Transimpedance-AGC
Amplifier and CDR Circuit for Broadband Data Receivers in 90nm
CMOS”IEEE Journal of Solid-State Circuit,vol.43,no.3,March
2008.

QR CODE