簡易檢索 / 詳目顯示

研究生: 劉芳辰
Fang-Chen Liu
論文名稱: 太陽能電池之暫態光電壓與光電流特性研究
Transient Photovoltage and Photocurrent Characterization for Solar Cells
指導教授: 陳瑞山
Reui-San Chen
口試委員: 陳瑞山
Reui-San Chen
林麗瓊
Li-Chyong Chen
邱博文
Po-Wen Chiu
徐旭政
Hsu-Cheng Hsu
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 110
中文關鍵詞: 太陽能電池暫態光電壓暫態光電流載子活期電荷密度
外文關鍵詞: Solar cells, Transient Photovoltage, Transient Photocurrent, Carrier lifetime, Charge Carrier density
相關次數: 點閱:175下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 中文摘要 I Abstract......III 致謝....IV 目錄....V 圖目錄..IX 表目錄..XIII 第一章 緒論....1 1.1 研究背景 (Research Background)......1 1.2 太陽光譜 (Solar Spectrum)......3 1.3 太陽能電池技術 (Solar Cells Technology)......5 1.3.1 第一代晶圓太陽能電池 (Wafer-Based Solar Cells)......7 1.3.2 第二代薄膜太陽能電池 (Commercial Thin Film Solar Cells)......9 1.3.3 第三代新興薄膜太陽能電池 (Emerging Thin Film Solar Cells)......11 1.4 研究動機 (Research Motivation)......12 第二章 元件介紹......14 2.1 單晶矽太陽能電池 (Monocrystalline Silicon Solar Cells)......14 2.1.1 材料簡介 (Materials Introduction)......14 2.1.2 元件結構 (Device Structure)......16 2.2 銅鋅錫硫硒太陽能電池 (Copper Zinc Tin Sulfide-Selenide Solar Cells)......18 2.2.1 材料簡介 (Materials Introduction)......18 2.2.2 CZTSSe/CdS/Window layer......20 2.2.3 CZTSSe/Zn (O,S)/Window layer......21 2.2.4 CZTSSe/ZTO/Window layer......22 2.2.5 CZTSSe /ZTO/Window layer/MgF2......23 2.3 硫化亞錫太陽能電池 (Tin Sulfide Solar Cells)......24 2.3.1 材料簡介 (Materials Introduction)......24 2.3.2 SnS/CdS/Window layer......26 2.3.3 SnS/MgF2/CdS/Window layer......27 第三章 量測原理與實驗方法......28 3.1 太陽能電池原理 (Principle of Solar Cells)......28 3.1.1 pn接面介紹 (pn Junction)......28 3.1.2 正向偏壓 (Forward Bias)......31 3.1.3 逆向偏壓 (Reverse Bias)......32 3.1.4 光電轉換原理 (Principles of Photoelectric Conversion)......33 3.2 暫態光電壓原理 (Principle of Transient Photovoltage)......36 3.2.1 暫態光電壓與照光下的電流密度之關係......41 3.3 暫態光電流與微分電容原理 (Principle of Transient Photocurrent and Differential Capacitance)......45 3.3.1 暫態光電流 (Transient Photocurrent)......45 3.3.2 微分電容分析 (Differential Capacitance Analysis)......48 3.4 電流對電壓特性曲線量測系統 (Current-Voltage Measurement)......49 3.4.1 最大輸出功率 (Maximum Output Power)......50 3.4.2 填充因子 (Fill Factor)......51 3.4.3 光電轉換效率 (Energy Conversion Efficiencies)......51 3.5 暫態光電壓量測系統 (Transient Photovoltage Measurement)......52 3.6 暫態光電流量測系統 (Transient Photocurrent Measurement)......55 第四章 結果與討論......57 4.1 太陽能電池之暫態光電壓分析......57 4.1.1 n-type CdS與n-type Zn (O,S) 之TPV比較......58 4.1.2 SnS/CdS之TPV比較......61 4.1.3 暫態光電壓之不同光偏壓下的載子活期τ∆n......64 4.2 太陽能電池之暫態光電流分析......68 4.3 太陽能電池之微分電容分析......78 第五章 結論......86 參考資料......87

    [1] P. R. Wolfe, “What Is Photovoltaics?”, Wiley-IEEE Press, 9-24. (2018).
    [2] S. R. Wenham, M. A. Green, “Silicon Solar Cells”, Progress in Photovoltaics, 4 (1), 3-33. (1996).
    [3] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, Journal of Applied Physics, 25 (5), 676-677. (1954).
    [4] M. Thirugnanasambandam, S. Iniyan, R Goic , “A review of solar thermal technologies”, Elsevier, 41 (1), 312-322. (2010).
    [5] The National Renewable Energy Laboratory, “Best Research-Cell Efficiency Chart”, Photovoltaic Research Publications. (2020).
    [6] R. Hulstrom, R. Bird, C. Riordan, “Spectral solar irradiance data sets for selected terrestrial conditions.”, Solar Cells, 15 (4), 365-391. (1985).
    [7] C. J. Cleveland, C. Morris, “Section 10 - Solar”, Handbook of Energy, 1, 405-450. (2013).
    [8] J. Jean, P.R. Brown, R.L. Jaffe, T. Buonassisi, V. Bulović, “Pathways for solar photovoltaics”, Energy Environ, Sci. 8 (4), 1200-1219. (2015).
    [9] M. Mrinalini, N. Islavath, S. Prasanthkumar and L. Giribabu, “Stipulating Low Production Cost Solar Cells All Set to Retail…!”, Chemical Record, 19 (2-3), 661-674. (2019).
    [10] K. Ranabhat, L. Patrikeev, A. Antal'evna- Revina, K. Andrianov, V. Lapshinsky, E. Sofronova, “An introduction to solar cell technology”, Journal of Applied Engineering Science, 14, 481-491. (2016).
    [11] T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production”, NPG Asia Materials, 2, 96-102. (2010).
    [12] B.P. Jelle, C. Breivik, “The Path to the Building Integrated Photovoltaics of Tomorrow”, Energy Procedia, 2, 78-87. (2012).
    [13] A.K. Shukla, K. Sudhakar, P. Baredar, “A comprehensive review on design of building integrated photovoltaic system”, Energy Build, 128, 99-110. (2016).
    [14] M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, “Solar cell efficiency tables (version 57)”, Progress in Photovoltaics, 29 (1), 3-15. (2020).
    [15] M. Jeong, I.W. Choi, E.M. Go, Y. Cho, M. Kim, B. Lee, et al, “Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss”, Science, 369 (6511), 1615-1620. (2020).
    [16] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-Sensitized Solar Cells”, ACS Publications, 110 (11), 6595-6663. (2010).
    [17] H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, “Development of CZTS-based thin film solar cells”, Thin Solid Films, 517 (7), 2455-2460. (2009).
    [18] B. G. Mendis, M. D. Shannon, M. C. Goodman, J. D. Major, R. Claridge, D. P. Halliday, K. Durose, “Direct observation of Cu, Zn cation disorder in Cu2ZnSnS4 solar cell absorber material using aberration corrected scanning transmission electron microscopy”, Progress in Photovoltaics, 22 (1), 24-34. (2012).
    [19] C. J. Bosson, M. T. Birch, D. P. Halliday, K. S. Knight, A. S. Gibbsd, P. D. Hattona, K. Durose, “Cation disorder and phase transitions in the structurally complex solar cell material Cu2ZnSnS4”, Journal of materials, 5 (32), 16672-16680. (2017).
    [20] S. K. Hwang, J. H Park, K. B. Cheon, S. W. Seo, J. E. Song, I. J. Park, S. G. Ji, M. A. Park, J. Y. Kim, “Improved interfacial properties of electrodeposited Cu2ZnSn (S,Se)4 thin-film solar cells by a facile post-heat treatment process”, Progress in Photovoltaics, 28 (12), 1345-1354. (2020).
    [21] G. K. Dalapati, S. Zhuk, S. Masudy-Panah, A. Kushwaha, H. L. Seng, V. Chellappan, V. Suresh, Z. Su, S. K. Batabyal, C. C. Tan, A. Guchhait, L. H. Wong, T. K. S. Wong, S. Tripathy, “Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells”, Scientific Reports, 7, 1350. (2017).
    [22] Q. Yu, J. Shi, L. Guo, B. Duan, Y. Luo, H. Wu, D. Li, Q. Meng, “Eliminating multi-layer crystallization of Cu2ZnSn (S,Se)4 absorber by controlling back interface reaction”, Nano Energy, 76, 105042. (2020).
    [23] B. Duan, L. Guo, Q. Yu, J. Shi, H. Wu, Y. Luo, D. Li, S. Wu, Z. Zheng, Q. Meng, “Highly efficient solution-processed CZTSSe solar cells based on a convenient sodium-incorporated post-treatment method”, Journal of Energy Chemistry, 28, 196-203. (2020).
    [24] Z. Wei, C. M. Fung, A. Pockett, T. O. Dunlop, J. D. McGettrick, P. J. Heard, O. J. Guy, M. J. Carnie, J. H. Sullivan, T. M. Watson, “Engineering of a Mo/SixNy Diffusion Barrier to Reduce the Formation of MoS2 in Cu2ZnSnS4 Thin Film Solar Cells”, Applied Energy Materials, 1 (6), 2749-2757. (2018).
    [25] L. Guo, J. Shi, Q. Yu, B. Duan, X. Xu, J. Zhou, J. Wu, Y. Li, D. Li, H. Wua, Y. Luo, Q. Meng, “Coordination engineering of Cu-Zn-Sn-S aqueous precursor for efficient kesterite solar cells”, Science Bulletin, 65 (9), 738-746. (2020).
    [26] P. M. Ushasree, B. Borab, “CHAPTER 1: Silicon Solar Cells”, RSC Publishing, 1-55. (2019).
    [27] dr. ir. M. Zeman, “Reading 3: Semiconductor materials for solar cells”, TU Delft OpenCourse, 1-27. (2016).
    [28] S. Das, K. Mandal, R. Bhattacharya, “Chapter 2 Earth-Abundant Cu2ZnSn (S,Se)4 (CZTSSe) Solar Cells”, Semiconductor Materials for Solar Photovoltaic Cells, 218, 25-74. (2015).
    [29] Kentaro Ito Nakazawa, “Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films”, Japanese Journal of Applied Physics, 27 (11), 2094-2097. (1988).
    [30] D. B. Mitzi, Oki Gunawan, Teodor K. Todorov, Kejia Wang, Supratik Guha, “The path towards a high-performance solution-processed kesterite solar cell”, Solar Energy material & Solar Cells, 95 (1), 1421-1436. (2011).
    [31] T. Maeda, S. Nakamura, T. Wada, “Electronic structure and phase stability of In-free photovoltaic semiconductors, Cu2ZnSnSe4 and Cu2ZnSnS4 by first-principles calculation”, Cambridge University Press, 1165. (2011).
    [32] W. Wang, M. T. Winkler, O. Gunawan, T.Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi, “Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency”, Advanced Energy Materials, 4 (7), 1-5. (2013).
    [33] T.H. Sajeesh, Anita R. Warrier, C. Sudha Kartha, K.P. Vijayakumar, “Optimization of parameters of chemical spray pyrolysis technique to get n and p-type layers of SnS”, Elsevier, 518 (15), 4370-4374. (2010).
    [34] I.Y. Ahmet, M. Guc, Y. Sánchez, M. Neuschitzer, V. Izquierdo-Roca, E. Saucedo, A.L. Johnson, “Evaluation of AA-CVD deposited phase pure polymorphs of SnS for thin films solar cells”, RSC Advances, 26, 14899-14909. (2019).
    [35] V. R. M. Reddy, S. Gedi, C. Park, R. W. Miles, K. T. Ramakrishna Reddy, “Development of sulphurized SnS thin film solar cells”, Current Applied Physics, 15 (5), 588-598. (2015).
    [36] P. Sinsermsuksakul, L. Sun, S. W. Lee, H. H. Park, S. B. Kim, C. Yang and R. G. Gordon, “Overcoming Efficiency Limitations of SnS-Based Solar Cells”, Advanced Energy Materials, 4 (15), 1400496. (2014).
    [37] O. Torheim, “Elementary Physics of PN Junctions”. (2007).
    [38] Donald A. Neamen, “Semiconductor Physics and Devices: Basic Principles”, McGraw-Hill College, 4th edition. (2012).
    [39] B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers”, Solar Energy Materials and Solar Cells, 90 (15), 2329-2337. (2006).
    [40] E. Palomares, Núria F. Montcada, María Méndez, Jesús Jiménez-López, W. Yang, G. Boschloo, “Chapter 7 - Photovoltage/photocurrent transient techniques”, Micro and Nano Technologies, 161-180. (2020).
    [41] J. W. Ryan, E. Palomares, “Photo-Induced Charge Carrier Recombination Kinetics in Small Molecule Organic Solar Cells and the Influence of Film Nanomorphology”, Advanced Energy Materials, 7 (10), 1601509. (2017).
    [42] E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumüller, M. G. Christoforo, M. D. McGehee, “Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells”, Energy & Environmental Science, 7 (11), 3690-3698. (2014).
    [43] O. J. Sandberg, K. Tvingstedt, P. Meredith, A. Armin, “Theoretical Perspective on Transient Photovoltage and Charge Extraction Techniques”, Journal of Physical Chemistry C, 123 (23), 14261-14271. (2019).
    [44] T. M. Clarke, C. Lungenschmied, J. Peet, N. Drolet, A. J. Mozer, “A Comparison of Five Experimental Techniques to Measure Charge Carrier Lifetime in Polymer-Fullerene Solar Cells”, Advanced Energy Materials, 5 (4), 1401345. (2014).
    [45] A. K. Thakur, H. Baboz1, G. Wantz, J. Hodgkiss, L. Hirsch, “Relation between charge carrier density and lifetime in polymer-fullerene solar cells”, Journal of Applied Physics, 112 (4), 044502. (2012).
    [46] C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, J. de Mello, J. R. Durrant, “Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell”, Appl. Phys. Lett., 92 (9), 093311. (2008).
    [47] A. Foertig, A. Baumann1, D. Rauh, V. Dyakonov, C. Deibel, “Charge Carrier Concentration and Temperature Dependent Recombination in Polymer-Fullerene Solar Cells”, Appl. Phys. Lett., 95 (5), 052104. (2009).
    [48] A. Maurano, C. G. Shuttle, R. Hamilton, A. M. Ballantyne, J. Nelson, W. Zhang, M. Heeney, J. R. Durrant, “Transient Optoelectronic Analysis of Charge Carrier Losses in a Selenophene Fullerene Blend Solar Cell”, The Journal of Physical Chemistry C, 115 (13), 5947–5957. (2011).
    [49] P. R. F. Barnes, K. Miettunen, X. Li, A. Y. Anderson, T. Bessho, M. Gratzel, B. C. O'Regan, “Interpretation of Optoelectronic Transient and Charge”, Advanced Materials, 25 (13), 1881-1922. (2013).

    無法下載圖示 全文公開日期 2026/08/03 (校內網路)
    全文公開日期 2026/08/03 (校外網路)
    全文公開日期 2026/08/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE