簡易檢索 / 詳目顯示

研究生: 許家和
Jia-Ho Hsu
論文名稱: 使用鍍層碳化鎢刀具切削Ti-6Al-4V和Ti-10V-2Fe-3Al鈦合金之切削性質研究
On the Machinability of Ti-6Al-4V and Ti-10V-2Fe-3Al Alloys Using Coated WC Cutting Tool
指導教授: 鍾俊輝
Chun-Hui Chung
口試委員: 郭俊良
Chun-Liang Kuo
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 98
中文關鍵詞: 鈦合金切削速度表面粗糙度刀具磨耗塑性流切削力
外文關鍵詞: Titanium, Cutting velocity, Surface roughness, Tool wear, Plastic flow, Cutting force
相關次數: 點閱:400下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗主要探討在不同的切削速度(30和60 m/min),固定每刃進給0.12 mm/tooth、徑向和軸向切深3 mm進行切削Ti-6Al-4V鈦合金和Ti-10V-2Fe-3Al鈦合金,不同的切削速度將會對鈦合金材料之切削性質產生何種影響。實驗結果顯示以切削速度30和60 m/min切削Ti-6Al-4V和Ti-10V-2Fe-3Al鈦合金,在平行進給方向的表面粗糙度值都差異不大,在垂直進給方向的表面粗糙度值較差,原因為刀具路徑重疊以及刀具磨耗所致。在刀具磨耗的部分,由於主要磨耗位置為刀刃口處,因此將刀口處的磨耗量作為刀具壽命之依據,切削Ti-6Al-4V鈦合金的刀具壽命優於切削Ti-10V-2Fe-3Al鈦合金之刀具。並在磨耗結束後觀察切削對於材料組織的影響,發現Ti-6Al-4V鈦合金有產生塑性流的現象。爾後再以100 %徑向切深、切削速度60 m/min、軸向切深1 mm和每刃進給0.03、0.04及0.05 mm/tooth作為實驗參數進行切削擷取切削力,得到Ti-10V-2Fe-3Al鈦合金的切削力係數大於Ti-6Al-4V鈦合金的切削力係數。


This experiment by using the different velocity (30 and 60 m/min), the feed per tooth is fixed at 0.12 mm/tooth and the axial and the radial depth are 3 mm to cut Ti-6Al-4V and Ti-10V-2Fe-3Al alloys. How the machinability of alloys will be changed when using different cutting velocity. The result shows that use 30 and 60m/min to cut Ti-6Al-4V and Ti-10V-2Fe-3Al alloy, the values of surface roughness are similar in parallel feed rate direction. When we observe that the direction of roughness perpendicular to the feed rate, we get the worse surface roughness. Because the tool wear gets worse and the tool paths are repeat. In the part of tool wear, the mainly wear location is tool edge, so we will define the tool life by the flank wear around the tool edge. Experimental results reveal that the tool life of cutting Ti-6Al-4V alloy are better than Ti-10V-2Fe-3Al alloy. When the end of the experiment, the phase diagram shows that it has the plastic flow when cutting Ti-6Al-4V alloy. And then we use the 100% of the tool diameter, 60 m/min of the cutting speed, 1 mm of the cutting depth and the feed per tooth are 0.03, 0.04 and 0.05 mm/tooth to cut the titanium alloys and get the cutting force. After calculating, the results show that the cutting force coefficient of Ti-10V-2Fe-3Al is higher than the Ti-6Al-4V.

摘要....................I Abstract................II 致謝....................III 目錄....................IV 表索引...................VII 圖索引...................IX 第1章 緒論..................1 1.1研究背景....................1 1.2研究目的與方法..............2 1.3論文架構....................2 第2章 文獻回顧...............3 2.1航太材料之簡介...............3 2.2鈦合金介紹...................3 2.2.1鈦合金基本性質.............3 2.2.2鈦合金的分類...............4 2.3表面粗糙度...................6 2.4刀具磨耗.....................8 2.5微硬度.......................11 2.6次表面破壞...................12 2.7切削力.......................13 第3章 實驗規劃與設備介紹.......16 3.1實驗目的與規劃................16 3.2實驗材料......................18 3.3切削刀具......................22 3.4實驗設備與切削方法.............22 3.5儀器介紹及實驗結果量測..........24 3.5.1表面粗糙度...................24 3.5.2刀具磨耗.....................25 3.5.3硬度.........................26 3.5.4次表面結構....................27 3.5.5切削力........................27 3.5.6切削力係數與線性迴歸分析........29 第4章 結果與討論..................32 4.1 Ti-6Al-4V_M鈦合金之切削實驗結果..32 (1)表面粗糙度.......................32 (2)刀具磨耗.........................35 (3)次表面破壞.......................39 (4)切削力...........................41 4.2 Ti-6Al-4V_S鈦合金之切削實驗結果..43 (1)表面粗糙度.......................43 (2)刀具磨耗.........................45 (3)次表面破壞.......................48 (4)切削力...........................50 4.3 Ti-10V-2Fe-3Al_M鈦合金之切削實驗結果...52 (1)表面粗糙度........................52 (2)刀具磨耗..........................54 (3)次表面破壞........................60 (4)切削力............................62 第5章 討論與比較...................65 第6章 結論.........................69 6.1結論..............................69 6.2未來展望...........................70 參考文獻..............................71 附錄A 刀具磨耗數據值...................74 附錄B 切削力原始記錄檔案...............81

[1]洪胤庭,純鈦及鈦合金特性及製程介紹,中工高雄會刊,第21卷,第1期,台灣,2013。
[2]Mouritz, A. P., 2012, “Introduction to aerospace materials.” Elsevier.
[3]張喜燕,趙永慶,白晨光,鈦合金及應用,化學工業出版社材料科學與工程出版中心,北京,2005。
[4]Davim, J. P., 2014, “Machining of titanium alloys.” Springer, Berlin, Heidelberg.
[5]Perdana, I. R. W., Dwisakti, M. A., Baharin, N. A. L. B., Bakarudin, N. A. B., Yusop, Y. S. B. “Titanium based alloy-Review,” School of Materials Engineering, Universiti Malaysia Perlis.
[6]Schmitz, T. L., Smith, K. S., 2009, “Machining Dynamic,” Springer, Germany.
[7]Pérez, J., Llorente, J. I., Sanchez, J. A., 2000, “Advanced cutting conditions for the milling of aeronautical alloys.” Journal of Materials Processing Technology, vol. 100, pp. 1-11.
[8]Vijay, S., Krishnaraj, V., 2013, “Machining parameters optimization in end milling of Ti-6Al-4V.” Procedia Engineering, vol. 64, pp. 1079-1088.
[9]Sun, J., Guo, Y. B., 2009, “A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V.” Journal of Materials Processing Technology, vol. 209, pp. 4036-4042.
[10]Houchuan, Y., Zhitong, C., ZiTong, Z., 2015, “Influence of cutting speed and tool wear on the surface integrity of the titanium alloy Ti-1023 during milling.” International Journal of Advanced Manufacturing Technology, vol. 78, pp. 1113-1126.
[11]Ginting, A., Nouari, M., 2009, “Surface integrity of dry machined titanium alloys.” International Journal of Machine Tools and Manufacture, vol. 49, pp. 325-332.
[12]Derrien, S., Vigneau, J., 1997, “High speed milling of difficult to machine alloys.” A review of developments towards dry and high speed machining of Inconel, vol. 718, pp. 439-456.
[13]Debnath, S., Reddy, M. M., Yi, Q. S., 2016, “Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method.” Measurement, vol. 78, pp. 111-119.
[14]ISO 8688-2:1989, Tool life testing in milling. Part 2-End milling, International Standard.
[15]Machai, C., Biermann, D., 2011, “Machining of β-titanium-alloy Ti–10V–2Fe–3Al under cryogenic conditions: Cooling with carbon dioxide snow.” Journal of Materials Processing Technology, vol. 211, pp. 1175-1183.
[16]馬寧元,李新中,刀具破損之探討,機械工業雜誌,第291期,2007。
[17]Standard, I.S.O., 1986, “Tool Life Testing with Single-Point Turning Tools.” ISO/DIS, 8688.
[18]Nabhani, F., 2001, “Wear mechanisms of ultra-hard cutting tools materials.” Journal of Materials Processing Technology, vol. 115, pp. 402-412.
[19]Ghani, J. A., Haron, C. H. C., Hamdan, S. H., Said, A. Y. M., Tomadi, S. H., 2013. “Failure mode analysis of carbide cutting tools used for machining titanium alloy.” Ceramics International, vol. 39, pp. 4449-4456.
[20]Che-Haron, C. H., Jawaid, A., 2005, “The effect of machining on surface integrity of titanium alloy Ti–6Al–4V.” Journal of Materials Processing Technology, vol. 166, pp. 188-192.
[21]Yang, H. C., Chen, Z. T., Jiang, L. K., 2013, “Experimental study on hardness of titanium alloy Ti-1023 by milling.” In Advanced Materials Research, vol. 690, pp. 2446-2449.
[22]Griffiths, B. J., 1987, “Mechanisms of white layer generation with reference to machining and deformation processes.” Journal of Tribology (Trans. ASME), vol. 109, pp. 525-530.
[23]Che-Haron, C. H., 2001, “Tool life and surface integrity in turning titanium alloy.” Journal of Materials Processing Technology, vol. 118, pp. 231-237.
[24]Sun, S., Brandt, M., Palanisamy, S., Dargusch, M. S., 2015, “Effect of cryogenic compressed air on the evolution of cutting force and tool wear during machining of Ti–6Al–4V alloy.” Journal of Materials Processing Technology, vol. 221, pp. 243-254.
[25]Andriya, N., Rao, P. V., Ghosh, S., 2012, “Dry machining of Ti-6Al-4V using PVD coated TiAlN tools.” In Proceedings of the World Congress on Engineering, WCE.
[26]Armendia, M., Garay, A., Iriarte, L. M., Arrazola, P. J., 2010, “Comparison of the machinabilities of Ti6Al4V and TIMETAL® 54M using uncoated WC–Co tools.” Journal of Materials Processing Technology, vol. 210, pp. 197-203.
[27]Arrazola, P. J., Garay, A., Iriarte, L. M., Armendia, M., Marya, S., Le Maitre, F., 2009, “Machinability of titanium alloys (Ti6Al4V and Ti555.3).” Journal of materials processing technology, vol. 209, pp. 2223-2230.
[28]Krishnaraj, V., Samsudeensadham, S., Sindhumathi, R., Kuppan, P., 2014, “A study on high speed end milling of titanium alloy.” Procedia Engineering, vol. 97, pp. 251-257.
[29]Arrazola, P. J., Garay, A., Sacristán, I., Iriarte, L. M., Soler, D., 2013, “Machining of titanium alloys used in aviation.” In 19th Congress of machine tools and manufacturing technology.
[30]Yao, C. F., Tan, L., Ren, J. X., Lin, Q., Liang, Y. S., 2014, “Surface integrity and fatigue behavior for high-speed milling Ti–10V–2Fe–3Al titanium alloy.” Journal of Failure Analysis and Prevention, vol. 14, pp. 102-112.
[31]趙永慶,,鈦合金相變及熱處理,中南大學出版社。長沙市,2012。

無法下載圖示 全文公開日期 2023/02/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE