簡易檢索 / 詳目顯示

研究生: 莊宜倢
Yi-chieh Chuang
論文名稱: 砂漿中鋼筋腐蝕與氯離子擴散行為相關性研究
Relationships Between Reinforcement Corrosion and Chloride Ion Diffusion in Mortar
指導教授: 陳君弢
Chun-tao Chen
口試委員: 張大鵬
Ta-peng Chang
沈得縣
De-hsien Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 167
中文關鍵詞: 鋼筋腐蝕氯離子碳化養護拌合
外文關鍵詞: reinforcement corrosion, chloride ion, carbonation, curing, mixing
相關次數: 點閱:304下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

過去的研究中多著重於探討氯離子於混凝土中的擴散行為,卻未深入探討氯離子擴散與鋼筋腐蝕間的交互關係,氯離子擴散公式中亦未考慮鋼筋腐蝕因子,因此本研究探討砂漿試體中氯離子擴散行為與鋼筋腐蝕程度之相關性。研究中透過通電方式製作腐蝕程度不同的鋼筋後,再以淡水或鹽水作為拌合水製作水灰比0.6之內埋鋼筋砂漿試體,再置於不同養護環境中,以觀察氯離子濃度分布與鋼筋腐蝕之相對關係。試驗結果顯示,氯離子的分佈可能受鋼筋腐蝕影響。水化早期(7天)時,於淡水拌合、鹽水養護之環境下,氯離子受鋼筋腐蝕吸引,氯離子濃度隨鋼筋初始通電時間增加,上升幅度約有3倍之多,而無論鹽水拌合、不拆模靜置於大氣中或於飽和石灰水養護之環境,鋼筋腐蝕的過程中卻排斥氯離子,濃度下降幅度約為17%~43%。然而,就長期水化(28天)而言,該影響較不顯著,很可能緣於水化漿體限制氯離子的移動。另外,本研究中亦透過碳化後之試體觀察氯離子與鋼筋腐蝕相互影響關係。當碳化深度不足以影響鋼筋時,隨著碳化深度增加,因氯離子不易進入試體內部,鋼筋腐蝕速率亦趨緩。


This study explored the relationship between the diffusion of the chloride ions and the reinforcement corrosion in mortar. Such relationship was not studied in literature although the diffusion of chloride ions in concrete was well discussed. In this study, the corroded reinforcements were prepared in advance by applied currents. Mortar specimens with w/c of 0.6 were prepared and cured using either salt or fresh water. Results showed that the chloride ion distribution was associated with the reinforcement corrosion. During the early hydration, the chloride ions were attracted by the reinfoecement corrosion in the specimens prepared with salt water and cured in fresh water. On the contrary, the chloride ions were repulsed in those prepared with salt water and cured either in air or by self-curing. However, in the long-term hydration, such influencing effects were not clear, possibly due to the hydration. In addition, this study explores the above relationship in carbonated mortar. As the carbonation proceeded, the chloride ion migration slowed down and the reinforcement corrosion was reduced.

摘要 Abstract 誌謝 總目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究方法及流程 第二章 文獻回顧 2.1 鋼筋腐蝕 2.1.1 腐蝕的定義 2.1.2 腐蝕的形態 2.1.3 電化學腐蝕 2.1.4 混凝土中鋼筋腐蝕的原因 2.1.5 鋼筋腐蝕量測法 2.2 氯離子基本性質 2.2.1 混凝土中氯離子來源 2.2.2 混凝土中氯離子存在型態 2.2.3 混凝土孔隙結構與氯離子傳輸 2.2.4 氯離子對鋼筋腐蝕的影響 2.2.5 氯離子量測法 2.3 混凝土碳化機理 2.3.1 碳化的定義 2.3.2 混凝土碳化的原因 2.3.3 混凝土碳化對氯離子及鋼筋腐蝕的影響 2.3.4 混凝土碳化判定方法 第三章 試驗規劃 3.1 試驗變數 3.2 試驗配比與材料 3.3 試體製作 3.4 試驗方法與設備 3.4.1 鋼筋加速腐蝕 3.4.2 鋼筋腐蝕量測試驗 3.4.3 氯離子濃度量測試驗 3.4.4 溶液酸鹼值量測試驗 3.4.5 碳化試驗 3.4.6 微觀結構分析試驗 第四章 試驗結果與分析 4.1 前言 4.2 先期試驗 4.2.1 鋼筋加速腐蝕試驗 4.2.2 不同金屬鏽蝕對於氯離子擴散之影響評估 4.3 氯離子濃度量測 4.3.1 淡水拌合、鹽水養護之環境 4.3.2 淡水拌合、不拆模且靜置於大氣之環境(控制組) 4.3.3 鹽水拌合、不拆模且靜置於大氣之環境 4.3.4 鹽水拌合、飽和石灰水養護之環境 4.4 鋼筋腐蝕量測 4.4.1 開路電位量測腐蝕趨勢 4.4.2 直流極化法量測腐蝕速率 4.5 氯離子濃度與鋼筋腐蝕之相關性 4.5.1 淡水拌合、鹽水養護之環境 4.5.2 淡水拌合、不拆模且靜置於大氣之環境 4.5.3 鹽水拌合、不拆模且靜置於大氣之環境 4.5.4 鹽水拌合、飽和石灰水養護之環境 4.6 溶液酸鹼值量測試驗 4.6.1 鹽水中置入鋼筋時溶液酸鹼值之變化 4.6.2 pH值與鋼筋腐蝕之相關性 4.7 碳化後浸泡於鹽水之複合劣化環境 4.7.1 碳化深度量測試驗 4.7.2 氯離子濃度量測 4.7.3 鋼筋腐蝕量測 4.7.4 碳化深度、氯離子濃度及鋼筋腐蝕之相關性 4.8 微觀結構分析 4.8.1 掃描式電子顯微鏡(SEM)分析 4.8.2 X光繞射儀(XRD)分析 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻 附錄A SEM分析圖 附錄B XRD圖譜 附錄C 試體吸水率

[1]Scully, J.C., "The fundamentals of corrosion", Pergamon Press, New York, NY, pp. 56-60, 1975.
[2]Fontana, M.G., "Corrosion engineering", McGraw-Hill, New York, NY, pp. 5-152, 1986.
[3]Sastri, V.S., Ghali, E., and Elboujdaini, M., "Corrosion prevention and protection : practical solutions", Wiley, Chichester, England ; Hoboken, NJ, pp. 336-338, 2007.
[4]陳彥廷,「混凝土中性化對鋼筋腐蝕行為之影響」,碩士論文,國立台灣大學,pp. 7-18,台北 (2010)。
[5]蔡立倫,「含腐蝕鋼筋之鋼筋混凝土梁耐震行為」,碩士論文,國立台灣科技大學,pp. 4,台北 (2010)。
[6]Uhlig, H.H. and Revie, R.W., "Corrosion and corrosion control : an introduction to corrosion science and engineering", Wiley, New York, NY, pp. 90-91, 1985.
[7]Broomfield, J.P., "Corrosion of steel in concrete : understanding, investigation and repair", E & FN Spon, London, UK, pp. 7, 1997.
[8]Liauw, T.C., "Influence of seawater on reinforced concrete buildings", Building Science, Vol. 9. No. 2, pp. 125-129, 1974.
[9]Mehta, P.K., "Concrete : structure, properties and materials", Prentice-Hall, NJ, pp. 153, 1986.
[10]Alonso, C., Andrade, C., Castellote, M., and Castellote, M., "Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar", Cement and Concrete Research, Vol. 30. No. 7, pp. 1047-1055, 2000.
[11]柯賢文,「腐蝕及其防制」,全華,台北市,pp. 5-75,2012。
[12]Andrade, C. and Alonso, C., "Corrosion rate monitoring in the laboratory and on-site", Construction and Building Materials, Vol. 10. No. 5, pp. 315-328, 1996.
[13]ASTM C 876-09, "Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete", ASTM International, West Conshohocken, PA, 2009.
[14]Stern, M., "A mehtod for determining corrosion rates from linear polarization data", Corrosion, Vol. 14. No. 9, pp. 60-64, 1958.
[15]ASTM G 59-09, "Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements", ASTM International, West Conshohocken, PA, 2009.
[16]ASTM G 102-89, "Calculation of Corrosion Rates and Related Information from Electrochemical Measurements", ASTM International, West Conshohocken, PA, 1989.
[17]紀茂傑,「混凝土耐久性影響因素及評估方法之研究」,博士論文,國立海洋大學,pp. 20-22,基隆 (2002)。
[18]Brousseau, R. and McCarter, W.J., "The A.C. response of hardened cement paste", Cement and Concrete Research, Vol. 20. No. 6, pp. 891-900, 1990.
[19]Hope, B.B., Page, J.A., and K.C., A., "Corrosion rates of steel in concrete", Cement and Concrete Research, Vol. 16. No. 5, pp. 771-781, 1986.
[20]ASTM G 106-89, "Standard Practice for Verification of Algorithm and Equipment for Electrochemical.Impedance Measurements", ASTM International, West Conshohocken, PA, 1989.
[21] Jones, D.A., "Principles and prevention of corrosion", Prentice Hall, Upper Saddle River, NJ, pp. 101, 1996.
[22]黃兆龍,「混凝土中氯離子含量檢測技術及試驗」,詹氏書局,台北市,pp. 2-21,2002。
[23]Arya, C., Buenfeld, N.R., and Newman, J.B., "Factors influencing chloride-binding in concrete", Cement and Concrete Research, Vol. 20. No. 2, pp. 291-300, 1990.
[24]Song, H.W., Lee, C.H., and Ann, K.Y., "Factors influencing chloride transport in concrete structures exposed to marine environments", Cement and Concrete Composites, Vol. 30. No. 2, pp. 113-121, 2008.
[25]Corbo, J. and Farazam, H., "Influence of Three Commonly Used Inorganic Compounds on Pore Solution Chemistry and Their Possible Implications to the Corrosion of Steel in Concrete", ACI Materials Journal, Vol. 86. No. 5, pp. 498-502, 1989.
[26]Brandt, A.M., "Cement based composites : materials, mechanical properties and performance", Taylor & Francis, New York, NY, pp. 154-161, 2009.
[27]Hausmann, D.A., "Steel corrosion in concrete -- How does it occur?", Material Protection, Vol. 6. No. 11, pp. 19-23, 1967.
[28]Diamond, S., "Chloride concentrations in concrete pore solutions resulting from calcium and sodium chloride admixtures", Cement, concrete and aggregates, Vol. 8. No. 2, pp. 97-102, 1986.
[29]Gouda, V.K., "Corrosion and Corrosion Inhibition of Reinforcing Steel: I. Immersed in Alkaline Solutions", British Corrosion Journal, Vol. 5. No. 5, pp. 198-203, 1970.
[30]Bentur, A., Diamond, S., and Berke Neal, S., "Steel corrosion in concrete : fundamentals and civil engineering practice", E & FN Spon, New York, NY, 1997.
[31]Kayyali, O.A., "Chloride penetration and the ratio of Cl-/OH- in the pores of cement paste", Cement and Concrete Research, Vol. 18. No. 6, pp. 895-900, 1988.
[32]Thomas, M., "Chloride thresholds in marine concrete", Cement and Concrete Research, Vol. 26. No. 4, pp. 513-519, 1996.
[33]Schiessl, P., "Corrosion of steel in concrete : report of the Technical Committee 60-CSC RILEM", Chapman and Hall, London, UK, pp. 7-58, 1988.
[34]AASHTO T260-97, "Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials", American Association of State Highway and Transportation Officials, Washington, D.C., 1997.
[35]Verbeck, G.J., "Carbonation of Hydrated Portland Cement", ASTM International, Chicago, IL, 1958.
[36] 胡弘昌,「碳化及鹽害環境下混凝土性質及腐蝕行為之研究」,碩士論文,國立海洋大學,pp. 25-93,基隆 (2005)。
[37]ACI 201.2R, "Guide to Durable Concrete", ACI International, Detroit, MI, 2001.
[38]Papadakis, V.G., Vayenas, C.G., and Fardis, M.N., "A Reaction Engineering Approach to the Problem of Concrete Carbonation", AIChE Journal, Vol. 35. No. 10, pp. 1639-1650, 1989.
[39]Kobayashi, K. and Uno, Y., "Influence of alkali on carbonation of concrete, part i, preliminary tests with mortar specimens", Vol. 19. No. 5, pp. 821-826, 1989.
[40]Parrott, L.J. and Killoh, D.C., "Carbonation in a 36 year old, in-situ concrete", Cement and Concrete Research, Vol. 19. No. 4, pp. 649-656, 1989.
[41]Schweitzer, P.A., "Fundamentals of corrosion : mechanisms, causes, and preventative methods", CRC Press, Boca Raton, FL, pp. 11-14, 2010.
[42]RILEM CPC-18, "CPC-18 Measurement of Hardened Concrete Cabonation Depth", RILEM Recommedations, London, UK, 1988.
[43]張舜庭,「石灰石水泥之力學與耐久性質研究」,碩士論文,國立臺灣科技大學,pp. 131-135,台北 (2012)。
[44]ASTM C150/C150M-11, "Standard Specification for Portland Cement", ASTM International, West Conshohocken, PA, 2011.
[45]ASTM C 94-09, "Standard Specification for Ready-Mixed Concrete", ASTM International, West Conshohocken, PA, 2009.
[46]ASTM C 128-07, "Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate", ASTM International, West Conshohocken, PA, 2007.
[47]ASTM C 136-06, "Standard Test Method for Sieve Analysis of Fine Aggregate", ASTM International, West Conshohocken, PA, 2006.
[48]ASTM C 192-07, "Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory", ASTM International, West Conshohocken, PA, 2007.
[49]葉桎銘,「不同拌合條件及養護環境下砂漿試體內部氯離子擴散與鋼筋腐蝕之關係」,碩士論文,國立臺灣科技大學,pp. 71-85,台北 (2011)。
[50]吳介豪,「含鋼筋石灰石砂漿之抗蝕與氯離子擴散研究」,碩士論文,國立臺灣科技大學,pp. 75-144,台北 (2012)。

無法下載圖示 全文公開日期 2019/01/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE