簡易檢索 / 詳目顯示

研究生: 陳銘揚
Ming-Yang Chen
論文名稱: 無線都會網路中具有服務品質保證之跨層級訊框排程方法
A Cross-Layer Scheduling Scheme with QoS Guarantee in Wireless Metropolitan Networks
指導教授: 陳金蓮
Jean-Lien C. Wu
口試委員: 周立德
Li-Der Chou
辛華昀
Haw-Yun Shin
鄭瑞光
Ray-Guang Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 62
中文關鍵詞: 具通道感知最早截止優先服務法則、具通道感知餘額輪流服務法則
外文關鍵詞: IEEE 802.16e、CAEDF 、CADRR
相關次數: 點閱:170下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    由於無線傳輸可使用的頻寬有限,因此如何在有限的頻寬資源下,使系統達到較高的流通量(Throughput)以支援最多的使用者是一個重要的研究的課題。本論文提出一個同時考量媒體存取控制(MAC)與通道實體(PHY)的跨層級(Cross-Layer)訊框傳送排程法則。針對即時性資料流,我們提出 具通道感知最早截止優先(Channel-Aware Earliest Deadline First, CAEDF)服務法則。CAEDF同時考慮用戶的通道狀況與即時性資料所能容忍最大傳送延遲時間(Maximum Latency),使資料得以在用戶通道狀況良好情況下,透過較高速的調變技術傳送出去。針對非即時性資料流,我們提出具通道感知餘額輪流法則(Channel-Aware Deficit Round, Robin CADRR)服務法則來調整可傳送之封包數量,進而達到使用頻寬量的補償效果,如此,除可增加整體流通量,亦兼顧用戶使用頻寬量之長程公平性(Long-term Fairness)。
    我們所提出的法則可在提升系統流通量的情況下,同時兼具滿足即時資料流的服務品質(Quality of Service)需求以及非即時資料流的長程公平性。模擬結果顯示在IEEE 802.16e網路中,使用CAEDF和CADRR法則傳送資料時,整體系統流通量比使用傳統EDF和DRR與Priority FCFS法則的整體系統流通量分別增加19%,使用者數量也分別增加了12.5%與53%。CAEDF法滿足了即時資料流之延遲要求,因此能夠大量減少封包的丟棄率,有效提升即時資料流用戶收訊的品質。而CADRR對於非即時資料流的用戶,無論用戶使用那種調變技術,透過額度的調整,可以達到長程公平性。


    摘 要I 誌 謝II 目 錄III 圖 目 錄V 表 目 錄VII 第一章 序論1 1.1 研究動機與目的1 1.2 相關研究2 1.3 相關文獻6 1.4 論文架構7 第二章 IEEE 802.16e無線都會網路與無線通道8 2.1 系統架構8 2.2 媒體存取控制層9 2.2.1 物件模型之對照關係9 2.2.2 頻寬要求機制11 2.2.3 頻寬分配機制13 2.2.4 資料流分類13 2.3 實體層15 2.4 都會型網路之無線通道20 第三章 跨層級的排程法則23 3.1 無跨層級排程之問題23 3.2 排程之設計原理24 3.3 CAEDF和CADRR之架構26 3.3.1最大等待訊框數之計算器28 3.3.2 通道狀況因素之計算器32 3.3.3 通道門檻值33 3.3.4 CAEDF法則34 3.3.5 CADRR法則37 3.4 訊框之排程流程圖41 第四章 效能評估44 4.1 模擬環境與參數44 4.2 模擬結果與討論49 4.2.1 方案1之模擬結果(固定式接取用戶,無雜訊之通道)49 4.2.2 方案2之模擬結果(移動式接取用戶,遮蔽效應)50 第五章 結論58 參考文獻60

    參考文獻
    [1] IEEE, “IEEE Standard for Local and Metropolitan Area Networks Part 16:Air Interface for Fixed Broadband Wireless Access Systems,” IEEE Std. 802.16-2004, Oct. 2004.
    [2] IEEE, “Draft Amendment to IEEE Standard for Local and Metropolitan Area Networks - Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems,” IEEE P802.16e/D12, Oct. 2005.
    [3] IEEE, “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems - Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1,” IEEE Std. 802.16-2006e, 28 Feb. 2006.
    [4] H.-Y. Wei and R. Izmailov, “Channel-Aware Soft Bandwidth Guarantee Scheduling for Wireless Packet Access,” In Proc. of the IEEE Wireless Communication and Networking Conference (WCNC’04), Vol. 2, March 21-25, 2004, pp. 1276-1281, Atlanta, Georgia, USA.
    [5] Z. Zhao, L. Zhang, L. Hao and Y. Shu, “An Efficient Real-Time Traffic Scheduling Algorithm in Wireless Networks,” In Proc. of the IEEE Canadian Conference on Electrical and Computer Engineering (CCECE’03), Vol. 3, May 4-7, 2003, pp. 1543-1546, Montreal University, Province of Quebec, Canadian.
    [6] Q. Liu, X. Wang and G. B. Giannakis, “Cross-Layer Scheduler Design with QoS Support for Wireless Access Networks,” In Proc. of the IEEE Quality of Service in Heterogeneous Wire/Wireless Networks (QSHINE’05), Aug. 22-24, 2005, Orlando Forida USA.
    [7] S. Ramachandran, C. W. Bostian and S. F. Midkiff, “A Link Adaptation Algorithm for IEEE 802.16,” In Proc. of the IEEE Wireless Communication and Networking Conformance (WCNC’05), Vol. 3, March 13-17, 2005, pp. 1466-1471, New Orleans, LA, USA.
    [8] H. Fattah and C. Leung, “An Overview of Scheduling Algorithms in Wireless Multimedia Networks,” IEEE Wireless Communications, Vol. 9, No. 5, Oct. 2002, pp. 76-83.
    [9] Y. Cao and O. K. L. Victor, “Scheduling Algorithms in Broadband Wireless Networks,” IEEE Proceedings, Vol. 89, No. 1, Jan. 2001, pp. 76-87.
    [10] S.-J. Yoo and K.-S. Shin, “A Fair Algorithm for Wireless Internet Differentiated Service Networks,” IEICE Transaction on Communications, Vol. E88-B, No. 9, Feb. 23, 2005, pp. 3682-3692.
    [11] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using Deficit Round-Robin,” IEEE/ACM Transactions on Networking, Vol. 4, No. 3, June 1996, pp. 375-385.
    [12] K. Wongthavarawat and A. Ganz, “IEEE 802.16 Based Last Mile Broadband Wireless Military Networks with Quality of Service Support,” In Proc. of the IEEE Military Communications Conference (MILCOM’03), Vol. 2, Oct. 13-16, 2003, pp. 779 784, Boston, MA, USA.
    [13] J. Chen, W. Jiao and H. Wang, “A Service Flow Management Strategy for IEEE 802.16 Broadband Wireless Access Systems in TDD Mode,” In Proc. of the IEEE International Conference on Communications (ICC’05), Vol. 5, May 16-20, 2005, pp. 3422-3426, Seoul, Korea.
    [14] S. A. Xergias, N. Passas and L. Merakos, “Flexible Resource Allocation in IEEE 802.16 Wireless Metropolitan Area Networks,” In Proc. of the IEEE Local and Metropolitan Area Network (LANMAN’05), Sept. 18-21, 2005, pp. 1-6, Greece, Crece, Chania.
    [15] C. Cicconetti, L. Lenzini, E. Mingozzi and C. Eklund, “Qality of Service Support in IEEE 802.16 Networks,” IEEE Network, Vol. 20, No. 2, March-April 2006, pp. 50-55.
    [16] K. M. F. Elasyed and A. K. F. Khattab, “Channel-Aware Earliest Deadline Due Fair Scheduling for Wireless Multimedia Network,” Wireless Personal Communication, Vol. 38, 2006, pp. 233-252.
    [17] C. Eklund, R. B. Marks, K. L. Standwood and S. Wang, “IEEE Standard 802.16: a Technical Overview of the Wireless MAN Air Interface for Broadband Wireless Access,” IEEE Communications Magazine, Vol. 40, No. 6, June 2002, pp. 98-107.
    [18] H. S. Alavi, M. Mojdeh and N. Yazdani, “A Quality of Service Architecture for IEEE 802.16 Standards,” In Proc. of the IEEE Asia-Pacific Conference on Communication, Oct. 3-5 2005, pp. 249-253, Perth, Australia.
    [19] G. Chu, D. Wang and S. Mei, “A QoS Architecture for the MAC protocol of IEEE 802.16 BWA System,” In Proc. of the IEEE International Conference on Communications (ICC’02), Vol. 1, June 29-July 1, 2002, pp. 435-439, Chengdu, China.
    [20] T. Kwon, H. Lee, S. Choi, J. Kim, D.-H. Cho, S. Cho, S. Yun, W.-H. Park and K. Kim, “Design and Implementation of a Simulator Based on a Cross-Layer Protocol between MAC and PHY Layers in a WiBro Compatible IEEE 802.16e OFDMA System,” IEEE Communications Magazine, Vol. 43, No. 12, Dec. 2005, pp. 136-146.
    [21] V. S. Abhayawardhana, I. J. Wassell, D. Crosby, M. P. Sellars and M. G. Brown, “Comparison of Empirical Propagation Path Loss Models for Fixed Wireless Access Systems,” In Proc. of the IEEE Vehicular Technology Conference (VTC’05), Vol. 1, May 30-Jun 1, 2005, pp. 73-77, Stockholm, Sweden.
    [22] D. Kitchener, M. Naden, W. Tong and P. Zhu, “Correlated Lognormal Shadowing Mode,” IEEE C802.16j-06/009, May 2006, http://www.ieee802.org/16/relay/.
    [23] D. Kitchener, M. Naden, W. Tong, P. Zhu, G. Senarnath, H. Zhang, D. Streer, D. Yu, M. Hart and S. Vadgama, “Multihop Path Loss Model,” IEEE C802.16j-06/011, May 2006, http://www.ieee802.org/16/relay/.
    [24] T. S. Rappaport, Wireless Communications Principles and Practice Second Edition, 2002, NJ, Prentice Hall.
    [25] D. Chen, I. -K. FU, M. Hart and W. C. Wong, “Channel Models and Performance Metrics for IEEE 802.16j Relay Task Group,” IEEE C802.16j-06/020, May 2006, http://www.ieee802.org/16/relay/.
    [26] G. Senarath, W. Tong, P. Zhu, H. Zhang, D. Steer, D. Yu, M. Naden and D. Kitchener, “Multihop System Evaluation Methodology: Traffic Models,” IEEE C802.16j-06/024r1, May 2006, http://www.ieee802.org/16/relay/.
    [27] H. Shimonishhi, M. Yoshida, F. Ruixue and H.Suzuki, “An Improvement of Weighted Round Robin Cell Scheduling in ATM Networks,” In Proc. of the IEEE Global Telecommunications Conference (GLOBECOM’97), Vol. 2, pp. 1119-1123, Phoenix, Arizona, USA.
    [28] T. -G. Kwon, S. -H. Lee and J. -K. Rho, “Scheduling Algorithm for Real-time Burst Traffic Using Dynamic Weighted Round Robin,” In Proc. of the IEEE International Symposium on Circuits and Systems (ISCS’98), Vol. 6, 1998, pp. 506-509, Monterey, CA, USA.
    [29] H. -S. Chao and W. Liao, “Credit-Based Slot Allocation for Multimedia Mobile Ad Hoc Network,” IEEE Journal on Selected Areas in Communications,” Vol. 21, No. 10, Dec. 2003, pp. 1642-1651.
    [30] R. K. Jain, D. W. Chiu, and W. R. Hawe, “Aquantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer System,” DEC Tech. Rep. DEC-TR-301, 1984, pp. 1-38, http://www.cs.wustl.edu/~jain/papers/fairness.htm.
    [31] A.Demers and S. Keshav, “Analysis and Simulation of a Fair Queueing Algorithm,” In Proc. of the ACM Special Interest Group on Data Communication (SIGCOMM’89), 1989, pp. 3-12, Austin, Texas, USA.

    QR CODE