簡易檢索 / 詳目顯示

研究生: 張志峰
Chih-fong Chang
論文名稱: IEEE 802.15.4標準中之以雜湊為基礎之訊標訊框碰撞避免機制
Study on Hash-Based Beacon Collision Avoidance Algorithm in IEEE 802.15.4 LR-WPAN
指導教授: 黎碧煌
Bih-hwang Lee
口試委員: 鍾添曜
Tein-yaw Chung
吳傳嘉
Zhuan-jia Wu
余聲旺
Sheng-wang YU
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 78
中文關鍵詞: 無線感測網路訊標訊框碰撞
外文關鍵詞: beacon collision
相關次數: 點閱:381下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線感測網路(wireless sensor network; WSN)是由一些感測節點所組成。由於感測節點傳輸距離的限制,故在一些大區域的應用中,會將網路拓樸建成叢集樹狀拓樸(cluster-tree topology)或是網狀拓樸(mesh topology)的型態。然而,此種拓樸首先會遇到的問題,是由不同個人區域網路(personal area network; PAN)中的協調者(coordinator)所送出的訊標訊框(beacon frame),可能會與其它個人區域網路之協調者所送出的訊標訊框發生碰撞,如此將導致發生碰撞區域之裝置無法使用,進而使得無線感測網路的效能下降,並降低其壽命。
    為了解決上述問題,所以本論文提出了訊標訊框雜湊配置法機制(hash-based beacon slot election scheme; HBSES)。在超碼框(superframe)中的活動週期(active period)中以雜湊函數(hash function)選擇一塊區間做為訊標訊框時槽(beacon frame slot)以傳送訊標訊框,如此將可有效降低訊標訊框碰撞的機率,進而增加系統產能並提高無線感測網路壽命。我們將所提出的方法與IEEE 802.15.4標準以及先前被提出的機制做比較。從模擬結果可知,本論文提出的機制可有效降低訊標訊框碰撞機率並於各項效能指標有明顯的提升。


    Wireless sensor network (WSN) consists of some sensor nodes. Because of the transmission limit of sensor nodes, it sometimes constructs the type of the network topology such as cluster-tree topology or mesh topology in large area application. However, the first problem in this type topology is that it may occur beacon collision because the beacon of the coordinator in the personal area network (PAN) may cause collision in others personal area network. Thus, it causes some devices not to work in the area of collision and decrease the performance and life of the wireless sensor network.
    In order to solve the above-mentioned problems, we proposed the hash-based beacon slot election scheme (HBSES). It can select a period as a beacon frame slot to transmit beacon in the active period of the superframe according to the hash function. Thus, it can decrease the beacon collision ratio effectively, improve the system throughput, and increase the wireless sensor network’s life. We compare our proposed scheme, IEEE 802.15.4 standard, and some above-mentioned schemes by simulations. The simulation results of the beacon collision ratio and other performance indicators show the improvement of our scheme.

    中文摘要 iv 英文摘要 v 目次 vi 圖目次 ix 表目次 xii 第一章 緒論 1 1.1 簡介 1 1.2 研究動機與目的 2 1.3 章節概要 4 第二章 IEEE 802.15.4/ZigBee標準概述 5 2.1 IEEE 802.15.4標準簡介 5 2.1.1 網路拓樸 6 2.1.2 IEEE 802.15.4實體層(PHY layer)介紹 7 2.1.3 IEEE 802.15.4媒介存取控制副層(MAC sublayer)介紹 9 2.1.4 超碼框結構(superframe structure) 9 2.1.5 CSMA/CA機制 11 2.1.6 資料傳輸模型(data transfer mode) 12 2.1.7 訊框格式 15 2.2 ZigBee標準概述 18 2.2.1 ZigBee網路裝置類別 18 2.2.2 ZigBee網路拓樸概述 19 2.2.3 ZigBee網路的建立 21 2.3 訊標訊框碰撞簡介 21 2.3.1 直接訊標訊框碰撞 21 2.3.2 間接訊標訊碰撞 22 2.4 相關研究 23 2.4.1 分時趨勢解決方案 24 2.4.2 僅訊標訊框週期趨勢解決方案 25 2.4.3 其它相關方法 25 第三章 訊標訊框雜湊配置法介紹 27 3.1 系統基本架構 27 3.2 系統運作流程 27 3.2.1 系統運作流程前言 27 3.2.1 新的超碼框結構 28 3.2.2 訊標訊框雜湊配置演算法 29 3.2.3 範例說明 32 3.2.4 訊標訊框碰撞情形之統計結果 34 3.2.5 不同超碼框級數之訊標訊框碰撞情形統計結果 35 第四章 系統模擬與結果 37 4.1 模擬環境與參數 37 4.2 效能評估項目 40 4.2.1 個別裝置封包丟棄率(drop ratio) 40 4.2.2 個別裝置產能(throughput) 40 4.2.3 個別裝置有效產能(goodput) 41 4.2.4 訊標訊框封包碰撞比例(beacon collision ratio; BCR) 41 4.2.5 裝置失去同步比例(lost synchronization ratio; LSR) 42 4.3 結果分析與比較 43 4.3.1 封包丟棄率分析與比較 44 4.3.2 個別裝置產能分析與比較 52 4.3.3 個別裝置有效產能分析與比較 60 4.3.4 個別區域網路產能之分析與比較 68 4.3.5 網路滿載時各個裝置的統計結果 71 4.3.6 訊標訊框碰撞比例分析與比較 72 4.3.7 裝置失去同步比例之分析與比較 73 第五章 結論及未來研究 75 參考文獻 76

    [1] I. F. Akyildiz, W. Su, Y. Sankarasubmmaiam, and E. Cayirci, “A Survey on Sensor Networks,” IEEE Communication Magazine, pp. 102-114, Aug. 2002.
    [2] D. Puccinelli, and M. Haenggi, ”Wireless Sensor Networks : Applications and Challenges of Ubiquitous Sensing,” IEEE Circuit and Systems Magazine, Vol. 5, No. 3, pp. 19-31, 2005.
    [3] F. Zhao, ”Wireless Sensor Networks : A New Computing Platform for Tomorrow’s Internet,” in Proceeding of IEEE 6th Circuits and Systems Symposium, Vol. 1, pp. 1-27, Jun. 2004.
    [4] M. Ulema, “Wireless sensor networks : architectures, protocals , and management,” in Proceeding of Network Operations and Management Symposium’04, Vol. 1, pp. 931, Apr. 2004.
    [5] M. A. M. Vieira, D. C. S. Junior, “Survey on Wireless Sensor Network Devices”, in Proceeding of Emerging Technologies and Factory Automation’03, Vol. 1, pp. 537-544, Sept. 2003.
    [6] J. L. Wong, M. Potkonjak, “Search in sensor networks : challenges, techniques, and applications,” in Proceeding of Acoustics, Speech, and Signal Processing, Vol. 4, pp. 3752-3755, 2002.
    [7] F. Sinrikaya, B. Yener, “Time Synchronization in Sensor Networks : A Survey,” IEEE Network Magazine, Vol. 18, No. 4, pp. 45-50, July-Aug. 2004.
    [8] H. Bai, M. Atiquzzaman, D. Lilja, “Wireless Sensor Network for Aircraft Health Monitoring,” in Proceeding of Broadband Networks’04, pp. 748-750, Oct. 2004.
    [9] D. Steere, A. Baptista, D. McNamee, C. Pu, J. Walpole, “Research challenges in environmental observation and forecasting systems,” in Proceeding of ACM/IEEE MOBICOM Conference, Boston, pp. 292-299, Aug. 2000.
    [10] L. Schwiebert, S. K. S. Gupta, J. Weinmann, “Research challenges in wireless networks of biomedical sensors,” in Proceeding of ACM/IEEE MOBICOM Conference, pp. 151-165, 2001
    [11] J. A. Guierrez, “On the use of IEEE 802.15.4 to enable wireless sensor networks in building automation,” in Proceeding of IEEE PIMRC’04, Vol. 3, pp. 1869-1869, Sept. 2004.
    [12] C. L. Yau, W. Y. Chung, “IEEE 802.15.4 Wireless Mobile Application for Healthcare System,” in Proceeding of Convergence Information Technology’07, pp. 1433-1438, Nov. 2007.
    [13] L. Q. Zhuang, K. M. Goh, J. B. Zhang, “The wireless sensor networks for factory automation : Issue and challenges,” in Proceeding of Emerging Technologies & Factory Automation’07, pp. 141-148, Sept. 2007.
    [14] J. J. Evans, “Wireless sensor networks in electrical manufacturing,” in Proceeding of Electrical Insulation Conference and Electrical Manufacturing Expo, pp. 460-465, Oct. 2005.
    [15] K. Sha, W. Shi, O. Watkins, “Using Wireless Sensor Networks for Fire Rescue Applications : Requirements and Challenges,” in Proceeding of Electro/information Technology, pp. 239-244, May. 2006.
    [16] IEEE 802 Working Group, “Standard for Part 15.4: Wireless Medium Access Control(MAC) and Physical(PHY) Specifications for Low Rate Wireless Personal Area Networks(LR-WPANs),” ANSI/IEEE 802.15.4, Oct. 2003.
    [17] IEEE 802 Working Group, “Standard for Part 15.4: Wireless Medium Access Control(MAC) and Physical(PHY) Specifications for Low Rate Wireless Personal Area Networks(LR-WPANs),” ANSI/IEEE 802.15.4, Sept. 2006.
    [18] E. Callaway, P. Gorday, L Hester, “Home Networking with IEEE 802.15.4: A Developing Standard for Low-Rate Wireless Personal Area Networks,” IEEE Communication Magazine, pp. 70-77, Aug. 2002.
    [19] G. Lu, B. Krishnamachari, C. S. Raghavendra, “Performance evaluation of the IEEE 802.15.4 MAC for low-rate low power wireless Networks,” in Proceeding of IEEE IPCCC, pp. 701-706, Apr. 2004.
    [20] J. Zheng, M. J. Lee, “Will IEEE 802.15.4 Make Ubiquitous Networking a Reality? A Discussion on a Potential Low Power, Low Bit Rate Standard,” IEEE Communication Magazine, Vol. 42, pp. 140-146, June. 2004.
    [21] J. A. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, B. Heile, “IEEE 802.15.4 : A Developing Standard for Low-Power Low-Cost Wireless Personal Area Networks,” IEEE Network Magazine, Vol. 15, No. 4, pp. 12-19, Sept./Oct. 2001.
    [22] T. Park, M. Lee J, J.Yang, “Stochastic Beacon Transmission in Wireless Sensor Networks: IEEE 802.15.4 case,” Consumer Communications and Networking Conference, 2007. CCNC 2007. 2007 4th IEEE
    [23] Zigbee-Alliance, "ZigBee specification," http://www.zigbee.org/, 2005.
    [24] A. Koubaa, A. Cunha, M. Alves, “A Time Division Beacon Scheduling Mechanism for IEEE 802.15.4/Zigbee Cluster-Tree Wireless Sensor Networks,” Real-Time Systems, 2007. ECRTS '07. 19th Euromicro Conference on 4-6 July 2007, pp.125-135, Aug. 2007

    QR CODE