簡易檢索 / 詳目顯示

研究生: 郭兆渝
Jhao-Yu Guo
論文名稱: 常壓電漿噴射束於回火麻田散鐵鋼表面滲氮處理之製程溫度、時間與硬質層生成相互關係之研究
Peculiar relationship of process temperature, process time, and hard layer formation in atmospheric pressure plasma jet nitriding tempering martensitic steel
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 黃嘉宏
Jia-Hong Huang
張奇龍
Chi-Lung Chang
黃駿
Chun Huang
王朝正
Chaur-Jeng Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 199
中文關鍵詞: 常壓電漿氮化(APPN)SKD11 冷作鋼硬度磨耗行為
外文關鍵詞: Atmospheric Pressure Plasma Nitriding (APPN), SKD11 Cold Working Steel, Hardness, Wear behavior
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

JIS SKD11冷作鋼非常適合用於模具或機械工具之製造業上,然而,由於該鋼材之模具或機械工具之缺點為壽命短,因此使它們的使用量大大降低。因此,本論文之研究目的在常壓電漿噴射束(Atmospheric Pressure Plasma Jet, APPJ)之系統,通入300 sccm-H2/N2之混合氣體針對JIS SKD11冷作鋼進行滲氮,以探討電漿所提供之溫度與製程時間,將控制表面硬度與滲氮厚度之結果。
本實驗採用常壓電漿滲氮(Atmospheric Pressure Plasma Nitriding, APPN)系統,在SKD11冷作鋼於483.5℃ (400 W)、544.5℃ (500 W)、628.0℃ (550 W)和705.6℃ (600 W)進行。滲氮後之試樣,透過分析量測可得滲氮層的顯微組織結構、化合物層之厚度、擴散層之厚度、表面硬度與表面形貌之變化,並且透過利用X射線繞射(X-ray diffraction, XRD)與高解析度場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM)分析之外掛之能量色散X射線譜(Energy Dispersive Spectroscopic, EDS)進行Mapping分析,以此瞭解表面微觀結構的變化。XRD分析滲氮過後之試樣,發現表面存在氮化相分別為ε (Fe2-3N)、γ’ (Fe4N)與CrN,此外,SKD11中的氮濃度隨著製程溫度的升高而增加,而表面硬度隨著製程溫度的升高而上升,於製程溫度544.5℃以內時;當製程溫度超過544.5℃時,滲氮層靠近表面處會形成具有孔隙的滲氮層,因此導致表面硬度下降。在本實驗中,具反應性的電漿物種能夠透過光放射光譜儀(Optical Emission Spectroscopy, OES)進行物種之量測,以此分析H2/N2的工作氣體產生通入常壓電漿中形成噴射束,透過電漿診斷確定活性電漿之物質,因此得知在300 sccm-H2/N2之混合氣體中,NH基對滲氮之過程扮演活性物質的角色。
APPN製程結果證實SKD11冷作鋼中的氮含量隨著滲氮處理時間增加而增加,而形成更厚的化合層與擴散層,此外,SKD11冷作鋼的表面硬度會隨著升高製程溫度及縮短製程時間或是降低製程溫度及增長製程時間而增加。另外,將製程溫度、製程時間、表面硬度與滲氮層作為參數因子之函數進行更高階的非線性建模,並以此參數研究,探討APPN滲氮參數對底材表面硬度與滲氮層的影響。經過高階非線性模型進行估計新的製程參數,而後透過實驗驗證,可得到估計值與實驗結果之誤差範圍為-15%至6%之內。
經過磨耗測試後,APPN滲氮後的試樣表現出優異的磨耗性能。尤其對於電漿功率500 W與處理時間為10 分鐘下,其磨耗率約為原始底材的十分之三,以此證實APPN會提高SKD11冷作鋼的耐磨耗性,並降低摩擦係數。此外,此項研究還分析滲氮後之試片的磨耗機制,並透過FE-SEM觀察磨耗痕跡在不同功率和製程時間下之磨耗的演化,並顯示磨耗表面呈現磨損性、黏著性、分層性、裂痕和氧化磨耗之模式的結果。


JIS SKD11 cold working steels are widely used in dies and mechanical tools manufacturing. Unfortunately, their use is greatly reduced due to their short lifetime. Thus, this research is conducted to investigate the nitriding process on surface hardness and nitriding thickness of JIS SKD11 cold working steels using 300 sccm-H2/N2 mixture gas in an atmospheric pressure plasma jet (APPJ) system, which is highly dependent on the process temperature and process time.
SKD11 cold working steels were nitrided at 483.5℃ (400 W), 544.5℃ (500 W), 628.0℃ (550 W), and 705.6℃ (600 W) by atmospheric pressure plasma. After nitriding, the microstructure, compound thickness, diffusion thickness, and surface hardness of the nitriding layer, as well as the surface morphology were accordingly determined. Using X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM) coupled with energy dispersive spectroscopic (EDS) for mapping analysis was used to comprehend the surface modification of the nitrided microstructure. XRD analysis showed the presence of ε (Fe2-3N), γ’ (Fe4N) and CrN phases of iron was evidently observed. Besides, the nitrogen content in SKD11 increased as the process temperature increased, whereas the surface hardness increased with the increasing process temperature within 544.5℃. The results indicate that the nitrided layer of the surface with the pores phenomenon, can be formed when a high nitriding process temperature was used. The surface hardness decreased with the increasing process temperature when the temperature was over 544.5℃. In this research, reactive plasma species were able to recognize with optical emission spectroscopy (OES) studies. An atmospheric pressure plasma plume produced using H2/N2 gas was explored for the active plasma species. In the 300 sccm-H2/N2 gas mixture, NH radicals play the role of active substance on the nitriding process.
The process of APPN results showed that nitrogen content in the SKD11 cold-working steel extended with increasing nitriding process time and process temperature, and thereby, the formation of thicker compound zones and diffusion zones. Furthermore, the surface hardness of the SKD11 cold-working steel increased by increasing the plasma process temperature and decreasing the process time, or decreasing the plasma process temperature and increasing the process time. Also, higher-order nonlinear modeling of the process temperature, process time, surface hardness, and nitriding layer as a function of parameter factors has been performed. It was possible to carry out parametric research to investigate in detail the effect of each atmospheric pressure plasma nitriding parameter (process temperature and process time) on the surface hardness and nitriding layer of the substrate. The new parameters are estimated by the higher-order nonlinear modeling, and the experimental verification was carried out. The error range between the estimated value and the experimental result was -15% to 6%.
After the wear test, the specimen nitrided with APPN showed excellent wear behavior. The wear rate is found approximately three-tenth of the pristine substrate for 500 W of plasma power and 10 mins of treatment time. APPN improved the wear resistance and decreased the coefficient of friction of SKD11 steel. Furthermore, this research included an analysis of the wear mechanisms of the nitrided sample, founded on FE-SEM observations of the wear track at various power and process time of the development of wear. The FE-SEM investigation of worn surfaces showed marks for abrasion, adhesion, delaminsation, crack, and oxidative modes of wear.

第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 4 第二章 文獻回顧 5 2.1 鋼材介紹 5 2.2 冷作模具鋼 5 2.3 合金元素對於鋼材之影響 6 2.4 表面硬化處理之技術 8 2.4.1 滲透之元素溶於鋼鐵之內 9 2.4.2 氮化層組織與性質 12 2.4.3 合金元素對於滲氮鋼材之影響 15 2.5 氮化歷史與介紹 18 2.5.1 氣體滲氮法(Gas nitriding) 18 2.5.2 鹽浴軟化氮法(Salt bath nitriding) 20 2.5.3 離子滲氮法(Ion nitriding) 21 2.5.4 其他滲氮法 25 2.6 電漿原理 28 2.6.1 電漿定義及機制 29 2.6.2 電漿之種類 33 2.6.3 電子溫度種類 34 2.6.4 帕邢定律 (Paschen's law) 36 2.6.5 電漿之生成 37 2.6.6 電漿放電方式 39 2.7 常壓電漿應用 43 2.8 磨耗 49 2.8.1 磨耗率 49 2.8.2 磨耗行為 50 2.8.3 磨耗形式 58 第三章 實驗流程與設備 67 3.1 研究設計 67 3.2 實驗材料 70 3.3 材料製備 71 3.3.1 SKD11工具鋼材滲氮前處理 71 3.3.2 常壓電漿系統 72 3.3.3 實驗製程 74 3.4 材料分析儀器 76 3.4.1 溫度量測儀 76 3.4.2 微小維克氏硬度機 77 3.4.3 光學顯微鏡 78 3.4.4 X光繞射儀 79 3.4.5 高解析度場發射掃瞄式電子顯微鏡 80 3.4.6 光學放射光譜儀 81 3.4.7 磨耗試驗機 82 3.4.8 白光干涉儀 84 第四章 結果與討論 85 4.1 滲氮製程於不同溫度下之探討 85 4.1.1 氮化層之材料性質與微觀結構分析 86 4.1.2 機械性質分析 90 4.1.3 氮化層之元素分析 95 4.1.4 電漿物種對於滲氮之影響 96 4.2 滲氮製程於不同溫度與處理時間下之影響 106 4.2.1 氮化層之材料性質與微觀結構分析 109 4.2.2 機械性質分析 121 4.2.3 氮化層之元素分析 125 4.2.4 滲氮高階非線性擬合探討 128 4.3 磨耗試驗 138 4.3.1 磨痕之體積損失與磨耗率探討 138 4.3.2 APPN製程於不同溫度下之探討磨痕之表面形貌 145 4.3.3 APPN製程於不同時間下之探討磨痕之表面形貌 153 第五章 結論 159 第六章 未來展望 161 參考文獻 162

[1] R. E. Haimbaugh, Practical induction heat treating, 2nd ed., ASM international, Geauga County, 2001.
[2] V. Miglani, The steel industry in USA, 2019. https://doi.org/10.13140/RG.2.2.15059.22561.
[3] Paulo, Why nitriding steel is growing in popularity, https://www.paulo.com/resources/nitriding-steel-growing-popularity/, 2022 (accessed August22, 2022).
[4] D. C. Wen, Plasma nitriding of plastic mold steel to increase wear- and corrosion properties, Surf. Coat. Technol. 204 (2009) 511–519. https://doi.org/10.1016/J.SURFCOAT.2009.08.023.
[5] L. F. Zagonel, C. A. Figueroa, R. Droppa, F. Alvarez, Influence of the process temperature on the steel microstructure and hardening in pulsed plasma nitriding, Surf. Coat. Technol. 201 (2006) 452–457. https://doi.org/10.1016/J.SURFCOAT.2005.11.137.
[6] H. Yamagata, The science and technology of materials in automotive engines, 1st ed., Woodhead Publishing Limited, 2005. https://doi.org/10.1533/9781845690854.
[7] P. Schaaf, J. Kasper, D. Hoeche, Laser gas assisted nitriding of Ti alloys, in: S. Hashmi (Ed.), Comprehensive Materials Processing-Laser Machining and Surface Treatment, Elsevier, 2014.
[8] B. Ben Fathallah, C. E. Dakhli, M. A. Terres, The effect of grinding parameters and gas nitriding depth on the grindability and surface integrity of AISI D2 tool steel, Int. J. Adv. Manuf. Technol. 104 (2019) 1449–1459. https://doi.org/10.1007/s00170-019-03943-4.
[9] H. Aghajani, S. Behrangi, Plasma nitriding of steels, Switzerland: Springer International Publishing, Cham, 2017.
[10] M. Wolf, Henry Bessemer and continuous casting, Rev. Métallurgie. 98 (2001) 63–73. https://doi.org/10.1051/METAL:2001159.
[11] B. Stoughton, Recent progress in open hearth steel practice, J. Franklin Inst. 168 (1909) 470–476. https://doi.org/10.1016/S0016-0032(09)90058-8.
[12] B. Lee, I. Sohn, Review of Innovative Energy Savings Technology for the Electric Arc Furnace, JOM. 66 (2014) 1581–1594. https://doi.org/10.1007/S11837-014-1092-Y/FIGURES/14.
[13] K. Genel, M. Demirkol, M. Çapa, Effect of ion nitriding on fatigue behaviour of AISI 4140 steel, Mater. Sci. Eng. A. 279 (2000) 207–216. https://doi.org/10.1016/S0921-5093(99)00689-9.
[14] B. Wang, S. Sun, M. Guo, G. Jin, Z. Zhou, W. Fu, Study on pressurized gas nitriding characteristics for steel 38CrMoAlA, Surf. Coat. Technol. 279 (2015) 60–64. https://doi.org/10.1016/J.SURFCOAT.2015.08.035.
[15] Z. Zhou, M. Dai, Z. Shen, J.Hu, Effect of D.C. electric field on salt bath nitriding for 35 steel and kinetics analysis, J. Alloys Compd. 623 (2015) 261–265. https://doi.org/10.1016/J.JALLCOM.2014.10.146.
[16] P. Koshy, R. C. Dewes, D. K. Aspinwall, High speed end milling of hardened AISI D2 tool steel (∼58 HRC), J. Mater. Process. Technol. 127 (2002) 266–273. https://doi.org/10.1016/S0924-0136(02)00155-3.
[17] L. Bourithis, G. D. Papadimitriou, J. Sideris, Comparison of wear properties of tool steels AISI D2 and O1 with the same hardness, Tribol. Int. 39 (2006) 479–489. https://doi.org/10.1016/J.TRIBOINT.2005.03.005.
[18] M. D. Conci, A. Ô. C. Bozzi, A. R. Franco, Effect of plasma nitriding potential on tribological behaviour of AISI D2 cold-worked tool steel, Wear 317 (2014) 188–193. https://doi.org/10.1016/J.WEAR.2014.05.012.
[19] S. Mostafavi, M. Fotouhi, A. Motasemi, M. Ahmadi, C. T. Sindi, Acoustic emission methodology to evaluate the fracture toughness in heat treated AISI D2 tool steel, J. Mater. Eng. Perform. 21 (2012) 2106–2116. https://doi.org/10.1007/S11665-011-0119-6/FIGURES/16.
[20] D. Das, A. K. Dutta, K. K. Ray, Influence of varied cryotreatment on the wear behavior of AISI D2 steel, Wear 266 (2009) 297–309. https://doi.org/10.1016/J.WEAR.2008.07.001.
[21]楊玉森、許憲斌、卓廷斌,模具材料與熱處理,五南圖書出版社,臺灣,2014。
[22] Steel JIS: Japanese Steels and Alloys, http://steeljis.com/index.php/, 2022 (accessed August22, 2022).
[23]洪敏雄,工具鋼的選擇與處理,大興圖書印製股份有限公司,臺灣,1982。
[24] L. Barrallier, Classical nitriding of heat treatable steel, in: E. J. Mittemeijer, M. A. Somers (Eds.), Thermochemical Surface Engineering of Steels, Woodhead Publishing, 2015, pp. 393–412. https://doi.org/10.1533/9780857096524.3.393.
[25]余煥騰,金屬熱處理學,六合出版社,臺灣,1990。
[26]陳皇鈞,鋼─顯微組織與性質,全華科技圖書公司,臺灣,1986。
[27]熱處理編輯委員會,熱處理,高立圖書有限公司,臺灣,2006。
[28]李勝隆,金屬熱處理材料原理與應用,第二版,全華圖書,臺灣,2018。
[29] Faculty of engineering-Kiel - Germany, Phase diagram of Fe-P and Fe-N, Institutes of the faculty of engineering, https://reurl.cc/lebAOj/, 2022 (accessed August22, 2022).
[30]張學典、顧應安,熱處理學,科技圖書股份有限公司,臺灣,1988。
[31] A. M. Bernal, Investigation on nitriding with enphasis in plasma nitriding process, current technology and equipment, Materials Processing Royal Institute of Technology, 2006.
[32]機械工程手冊 電機工程手冊編輯委員會,熱處理與表面處理:精密製造,五南圖書出版股份有限公司,臺灣,2002。
[33]黃稚惠,氮化處理對SKH51高速鋼機械性質與微奈米級顯微結構影響之研究,南台科技大學機械工程系,碩士論文,2012。
[34] A. W Machlet, Treatment of steel, iron, &c, US1065379A, 1913. https://patents.google.com/patent/US1065379A/en.
[35] A. W Machlet, Hardening or treatment of steel, iron, &c., US1092925A, 1914. https://patents.google.com/patent/US1092925A/en.
[36] D. Pye, Practical nitriding and ferritic nitrocarburizing, ASM International, 2003.
[37] J. R. Deepak, Nivin Joy, A. Krishnamoorthy, C. P. Jaswanth, G. Harish, Gas nitriding of CP grade–2 commercially pure titanium and Ti6Al4V grade–5 titanium alloy, Mater. Today Proc. 44 (2021) 3744–3750. https://doi.org/10.1016/J.MATPR.2020.11.586.
[38] D. C. Wen, Erosion and wear behavior of nitrocarburized DC53 tool steel, Wear 268 (2010) 629–636. https://doi.org/10.1016/J.WEAR.2009.10.012.
[39]金重勳,熱處理,復文書局,臺灣,1988。
[40] J. Michalski, D.C. glow discharge in a gas under lowered pressure in ion nitriding of Armco iron, J. Mater. Sci. Lett. 2000 1916. 19 (2000) 1411–1414. https://doi.org/10.1023/A:1006759003065.
[41] M. Najafizadeh, M. Ghasempour-Mouziraji, B. Sadeghi, P. Cavaliere, Characterization of tribological and mechanical properties of the Si3N4 coating fabricated by duplex surface treatment of pack siliconizing and plasma nitriding on AISI D2 tool steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 52 (2021) 4753–4766. https://doi.org/10.1007/S11661-021-06410-6/TABLES/2.
[42] A. R. Mashreghi, S. M. Y. Soleimani, S. Saberifar, The investigation of wear and corrosion behavior of plasma nitrided DIN 1.2210 cold work tool steel, Mater. Des. 46 (2013) 532–538. https://doi.org/10.1016/J.MATDES.2012.10.046.
[43] E. Camps, F. Becerril, S. Muhl, O. Alvarez-Fregoso, M. Villagrán, Microwave plasma characteristics in steel nitriding process, Thin Solid Films 373 (2000) 293–298. https://doi.org/10.1016/S0040-6090(00)01110-X.
[44] P. Abraha, Y. Yoshikawa, Y. Katayama, Surface modification of steel surfaces by electron beam excited plasma processing, Vacuum 83 (2008) 497–500. https://doi.org/10.1016/J.VACUUM.2008.04.073.
[45] I. H. Hutchinson, Principles of plasma diagnostics, Plasma Phys. Control. Fusion. 44 (2002) 2603. https://doi.org/10.1088/0741-3335/44/12/701.
[46] H. Y. Hsiao, W. T. Tsai, Characterization of anodic films formed on AZ91D magnesium alloy, Surf. Coat. Technol. 190 (2005) 299–308. https://doi.org/10.1016/J.SURFCOAT.2004.03.010.
[47] Y. Eliezer, S. Eliezer, The fourth state of matter : an introduction to the physics of plasma, 2nd ed., Bristol, Institute of Physics Publishing, 1989.
[48] M. S. Bak, B. Mcgann, C. Carter, N. St, J. Braithwaite, Introduction to gas discharges, Bristol, Institute of Physics Publishing, 2000.
[49] J. Peran, S. E. Ražić, Application of atmospheric pressure plasma technology for textile surface modification, Text. Res. J. 90 (2019) 1174–1197. https://doi.org/10.1177/0040517519883954.
[50] B. N. Chapman, Glow discharge processes: sputtering and plasma etching, 1st ed., New York, Wiley-Interscience, 1980.
[51] LPP (Laboratoire de Physique des Plasmas), https://www.lpp.polytechnique.fr/Our-research-in-a-few-words?lang=en/, 2022 (accessed August22, 2022).
[52] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: A review, Spectrochim. Acta Part B At. Spectrosc. 61 (2006) 2–30. https://doi.org/10.1016/J.SAB.2005.10.003.
[53] Y. Setsuhara, Low-temperature atmospheric-pressure plasma sources for plasma medicine, Arch. Biochem. Biophys. 605 (2016) 3–10. https://doi.org/10.1016/J.ABB.2016.04.009.
[54] Y. Chen, Electrical breakdown of gases in subatmospheric pressure, Auburn university, 2016. https:// https://etd.auburn.edu//handle/10415/5207.
[55] Plasma Univers, Electric glow discharge. https://www.plasma-universe.com/electric-glow-discharge/, 2022 (accessed August22, 2022).
[56] E. B. Sözer, Gaseous discharges and their applications as high power plasma switches, Auburn university, 2008. https://etd.auburn.edu//handle/10415/1073.
[57] A. Schütze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, R. F. Hicks, The atmospheric-pressure plasma jet: A review and comparison to other plasma sources, IEEE Trans. Plasma Sci. 26 (1998) 1685–1694. https://doi.org/10.1109/27.747887.
[58] X. Xu, Dielectric barrier discharge — properties and applications, Thin Solid Films 390 (2001) 237–242. https://doi.org/10.1016/S0040-6090(01)00956-7.
[59] U. Kogelschatz, Filamentary, patterned, and diffuse barrier discharges, IEEE Trans. Plasma Sci. 30 (2002) 1400–1408. https://doi.org/10.1109/TPS.2002.804201.
[60] J. Li, C. Ma, S. Zhu, F. Yu, B. Dai, D. Yang, A review of recent advances of dielectric barrier discharge plasma in catalysis, Nanomater. 9 (2019) 1428. https://doi.org/10.3390/NANO9101428.
[61] P. Chowdhury, R. Belur, L. Bertello, M. Hur, S. H. Hong, Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod- and well-type cathodes, J. Phys. D. Appl. Phys. 35 (2002) 1946. https://doi.org/10.1088/0022-3727/35/16/308.
[62] E. Akdoǧan, D. Çökeliler, L. Marcinauskas, P. Valatkevicius, V. Valincius, M. Mutlu, A new method for immunosensor preparation: Atmospheric plasma torch, Surf. Coat. Technol. 201 (2006) 2540–2546. https://doi.org/10.1016/J.SURFCOAT.2006.04.032.
[63] H. Xu, G. Ouyang, H. Gao, G. Wang, B. Chen, J. Jin, Z. Wang, X. Dai, X. Lu, M. Laroussi, V. Puech, On atmospheric-pressure non-equilibrium plasma jets and plasma bullets, Plasma Sources Sci. Technol. 21 (2012) 034005. https://doi.org/10.1088/0963-0252/21/3/034005.
[64] U. Lommatzsch, D. Pasedag, A. Baalmann, G. Ellinghorst, H. E. Wagner, Atmospheric pressure plasma jet treatment of polyethylene surfaces for adhesion improvement, Plasma Process. Polym. 4 (2007) S1041–S1045. https://doi.org/10.1002/PPAP.200732402.
[65] R. Wang, Y. Shen, C. Zhang, P. Yan, T. Shao, Comparison between helium and argon plasma jets on improving the hydrophilic property of PMMA surface, Appl. Surf. Sci. 367 (2016) 401–406. https://doi.org/10.1016/J.APSUSC.2016.01.199.
[66] S. A. Fadhlalmawla, A. A. H. Mohamed, J. Q. M. Almarashi, T. Boutraa, The impact of cold atmospheric pressure plasma jet on seed germination and seedlings growth of fenugreek (Trigonella foenum-graecum), Plasma Sci. Technol. 21 (2019) 105503. https://doi.org/10.1088/2058-6272/AB2A3E.
[67] S. Schneider, F. Jarzina, J. W. Lackmann, Etching materials with an atmospheric-pressure plasma jet, Plasma Sources Sci. Technol. 7 (1998) 282.
http://iopscience.iop.org/0963-0252/7/3/005
[68] H. Nagamatsu, R. Ichiki, Y. Yasumatsu, T. Inoue, M. Yoshida, S. Akamine, S. Kanazawa, Steel nitriding by atmospheric-pressure plasma jet using N2/H2 mixture gas, Surf. Coat. Technol. 225 (2013) 26–33. https://doi.org/10.1016/J.SURFCOAT.2013.03.012.
[69] J. Miyamoto, T. Inoue, K. Tokuno, H. Tsutamori, P. Abraha, Surface modification of tool steel by atmospheric-pressure plasma nitriding using dielectric barrier discharge, Tribol. Online. 11 (2016) 460–465. https://doi.org/10.2474/TROL.11.460.
[70]王憲柏,以常壓電漿噴射束於SKD11模具鋼表面硬化處理之研究,國立臺灣科技大學機械工程系,碩士論文,2018。
[71]鍾宛庭,電漿功率效應於SKD11工具鋼之常壓電漿噴射束表面硬化處理,國立臺灣科技大學機械工程系,碩士論文, 2019。
[72] B. Bhushan, Principles and applications of tribology, 1st ed., A John Wiley & Sons, Ltd., New York, 1999.
[73] G. Li, X. Long, P. Yang, Z. Liang, Advance on friction of stamping forming, Int. J. Adv. Manuf. Technol. 2018 961. 96 (2018) 21–38. https://doi.org/10.1007/S00170-017-1538-9.
[74] F. P. Bowden, D. Tabor, F. Palmer, The friction and lubrication of solids, Am. J. Phys. 19 (2005) 428. https://doi.org/10.1119/1.1933017.
[75] N. P. Suh, H. C. Sin, The genesis of friction, Wear 69 (1981) 91–114. https://doi.org/10.1016/0043-1648(81)90315-X.
[76] K. H. Zum Gahr, Microstructure and wear of materials, Elsevier Science Publishers, Amsterdam, 1987.
[77] G. Castro, A. Fernández-Vicente, J. Cid, Influence of the nitriding time in the wear behaviour of an AISI H13 steel during a crankshaft forging process, Wear 263 (2007) 1375–1385. https://doi.org/10.1016/J.WEAR.2007.02.007.
[78] G. Castro-Regal, A. Fernández-Vicente, M. A. Martínez, Comparison of sliding friction and wear behaviour of overhead conveyor steels tested under dry and lubrication conditions, Rev. Metal. 41 (2005) 212–219. https://doi.org/10.3989/REVMETALM.2005.V41.I3.207.
[79] M. Terčelj, A. Smolej, P. Fajfar, R. Turk, Laboratory assessment of wear on nitrided surfaces of dies for hot extrusion of aluminium, Tribol. Int. 40 (2007) 374–384. https://doi.org/10.1016/J.TRIBOINT.2005.09.032.
[80] M. B. Karamis, E. Gercekcioglu, Wear behaviour of plasma nitrided steels at ambient and elevated temperatures, Wear 243 (2000) 76–84. https://doi.org/10.1016/S0043-1648(00)00426-9.
[81] H. Yan, L. Zhao, Z. Chen, X. Hu, Z. Yan, Investigation of the surface properties and wear properties of AISI H11 steel treated by auxiliary heating plasma nitriding, Coatings 10 (2020) 528. https://doi.org/10.3390/COATINGS10060528.
[82] DIN 50320:Verschleiß Begriffe, Systemanalyse von Verschleißvorgängen, 1979.
[83] R. Aghababaei, Effect of adhesion on material removal during adhesive wear, Phys. Rev. Mater. 3 (2019) 063604. https://doi.org/10.1103/PhysRevMaterials.3.063604.
[84]溫詩鑄,摩擦學原理,第4版,清華大學出版社,中國,2012。
[85] K. H. Z. Gahr, Wear by hard particles, Tribol. Int. 31 (1998) 587–596. https://doi.org/10.1016/S0301-679X(98)00079-6.
[86] M. Kandeva-Ivanova, A. Vencl, D. Karastoyanov, Advanced tribological coatings for heavy-duty applications: case studies, Institution of Information and Communication Technology, 2016.
[87] K. Kato, K. Hokkirigawa, Abrasive wear diagram, Elsevier Sci. Publishers B.V, 1985. https://doi.org/10.2/JQUERY.MIN.JS.
[88] F. H. Stott, The role of oxidation in the wear of alloys, Tribol. Int. 31 (1998) 61–71. https://doi.org/10.1016/S0301-679X(98)00008-5.
[89] G. W. Stachowiak, A. W. Batchelor, Fatigue wear, in: G. W. Stachowiak, A. W. Batchelor, Engineering tribology, Elsevier, Amsterdam, 1993. https://doi.org/10.1016/S0167-8922(08)70588-1.
[90] A. M. Kenneth Holmberg, Coatings tribology properties, mechanisms, techniques and applications in surface, 2nd ed., Elsevier, Amsterdam, 1994.
[91] R. R. Phiri, O. Philip Oladijo, E. T. Akinlabi, Thin films in tribology, in: Proceedings of the international conference on industrial engineering and operations management (2018) 140–146. https://doi.org/10.1016/S0167-8922(08)70358-4.
[92] V. M. Pasculescu, M. C. Suvar, L. I. Tuhut, L. Munteanu, Numerical modelling of hydrogen release and dispersion, MATEC Web of Conf. (2021). https://doi.org/10.1051/matecconf/202134201004.
[93] T. W. Kerlin, M. Johnson, Practical thermocouple thermometry, 2nd ed., International society of automation, Pittsburgh, 2012.
[94]泰仕電子工業股份有限公司, K/J 記憶式溫度錶TES-1307。http://www.tes.com.tw/product_detail.asp?seq=119/, 2022 (accessed August24, 2022).
[95] RealPars, Thermocouple explained working principles, https://realpars.com/thermocouple/ (accessed August24, 2022).
[96]台灣鉅佳貿易行股份有限公司, 金相研磨拋光機。
https://reurl.cc/NR8gZk/, 2022 (accessed August24, 2022).
[97] P. Kah, H. Väst, P. Layus, P. Kah, J. Martikainen, P. Layus, Methods of evaluating weld quality in modern production (Part 1), Proc. 16th Int. Conf. (2011) 7–8. https://doi.org/10.13140/2.1.1413.9685.
[98] ASTM, Standard test method for microindentation hardness of materials:ASTM E384−17, ASTM Comm. 384 (1999) 399.
[99] R. E. Reed-Hill, R. Abbaschian, Physical metallurgy principles, 4th ed., Van Nostrand, New York, 1973.
[100]楊仲準,X光繞射分析技術與應用,科儀新知,第三十二卷,2011。
[101] Bruker, D2 Phaser.
https://www.bruker.com/en.html/, 2022 (accessed August25, 2022).
[102] JEOL,JSM-7900F 場發射掃瞄式電子顯微鏡。https://www.jeol.com.cn/product/detail/405/, 2022 (accessed August24, 2022).
[103]材料世界網,OES技術於電漿製程監測之應用。https://www.materialsnet.com.tw/DocView.aspx?id=4091/, 2022 (accessed August25, 2022).
[104] NIST, Atomic spectra database.
https://doi.org/10.18434/T4W30F/, 2022 (accessed August25, 2022).
[105]王尊信、洪連輝, 躍遷,科學Online,2011。
[106]奇邑光電有限公司,光譜儀。
https://gieoptics.com/photoelectric_01.php/, 2022 (accessed August25, 2022).
[107] Anton-Paar, Pin-on-disc.
https://www.anton-paar.com/tw-zh/, 2022 (accessed August25, 2022).
[108] P. Pavliček, E. Mikeska, White-light interferometer without mechanical scanning, Opt. Lasers Eng. 124 (2020) 105800. https://doi.org/10.1016/J.OPTLASENG.2019.105800.
[109] Keyence, White light interferometers. https://www.keyence.com/ss/products/microscope/roughness/equipment/interferometers.jsp/, 2022 (accessed August25, 2022).
[110] W. Bauer, M. Weber, S. Chanbai, White Light Interferometry, Encycl. Tribol. (2013) 4115–4127. https://doi.org/10.1007/978-0-387-92897-5_320.
[111] Polytec, Leader in optical measurement equipment. https://www.polytec.com/int/, 2022 (accessed August25, 2022).
[112] Y. Morisada, H. Fujii, T. Mizuno, G. Abe, T. Nagaoka, M. Fukusumi, Modification of nitride layer on cold-work tool steel by laser melting and friction stir processing, Surf. Coat. Technol. 204 (2009) 386–390. https://doi.org/10.1016/J.SURFCOAT.2009.07.043.
[113] C. E. Pinedo, W. A. Monteiro, On the kinetics of plasma nitriding a martensitic stainless steel type AISI 420, Surf. Coat. Technol. 179 (2004) 119–123. https://doi.org/10.1016/S0257-8972(03)00853-3.
[114] U. Ratayski, C. Schimpf, C. Wüstefeld, A. Dalke, H. Biermann, D. Rafaja, Influence of elevated temperature and reduced pressure on the degradation of iron nitride compound layer formed by plasma nitriding in AISI D2 tool steels, Eng. Reports 4 (2022) e12371. https://doi.org/10.1002/ENG2.12371.
[115] L. F. Zagonel, R. L. O. Basso, F. Alvarez, Precipitates Temperature Dependence in Ion Beam Nitrited AISI H13 Tool Steel, Plasma Process. Polym. 4 (2007) S736–S740. https://doi.org/10.1002/PPAP.200731808.
[116] S. D. Jacobsen, R. Hinrichs, C. Aguzzoli, C. A. Figueroa, I. J. R. Baumvol, M. A. Z. Vasconcellos, Influence of current density on phase formation and tribological behavior of plasma nitrided AISI H13 steel, Surf. Coat. Technol. 286 (2016) 129–139. https://doi.org/10.1016/J.SURFCOAT.2015.12.025.
[117] F. A. P. Fernandes, S. C. Heck, C. A. Picone, L. C. Casteletti, On the wear and corrosion of plasma nitrided AISI H13, Surf. Coat. Technol. 381 (2020) 125216. https://doi.org/10.1016/J.SURFCOAT.2019.125216.
[118] S. S. Hosmani, R. E. Schacherl, E. J. Mittemeijer, Nitrogen uptake by an Fe–V alloy: Quantitative analysis of excess nitrogen, Acta Mater. 54 (2006) 2783–2792. https://doi.org/10.1016/J.ACTAMAT.2006.02.017.
[119] Z. Zhang, X. Li, H. Dong, Plasma-nitriding and characterization of FeAl40 iron aluminide, Acta Mater. 86 (2015) 341–351. https://doi.org/10.1016/J.ACTAMAT.2014.11.044.
[120] F. Mahboubi, K. Abdolvahabi, The effect of temperature on plasma nitriding behaviour of DIN 1.6959 low alloy steel, Vacuum 81 (2006) 239–243. https://doi.org/10.1016/J.VACUUM.2006.03.010.
[121] D. She, W. Yue, Z. Fu, Y. Gu, C. Wang, J. Liu, The effect of nitriding temperature on hardness and microstructure of die steel pre-treated by ultrasonic cold forging technology, Mater. Des. 49 (2013) 392–399. https://doi.org/10.1016/J.MATDES.2013.01.003.
[122]廖峻德、翁志強、吳奕德、黃芷翎,子計畫一:環境資源再生之電漿系統的開發(1/3),行政院國家科學委員會專題研究計畫,國立成功大學材料科學及工程學,2005。
[123] D. Xiao, C. Cheng, J. Shen, Y. Lan, H. Xie, X. Shu, Y. Meng, J. Li, P. K. Chu, Characteristics of atmospheric-pressure non-thermal N2 and N2/O2 gas mixture plasma jet, J. Appl. Phys. 115 (2014) 033303. https://doi.org/10.1063/1.4862304.
[124] T. Aizawa, I. Rsadi, E. E. Yunata, High density RF-DC plasma nitriding under optimized conditions by plasma-diagnosis, Appl. Sci. 12 (2022) 3706. https://doi.org/10.3390/APP12083706.
[125] K. J. Clay, S. P. Speakman, G. A. J. Amaratunga, S. R. P. Silva, Characterization of a‐C:H:N deposition from CH4/N2 RF plasmas using optical emission spectroscopy, J. Appl. Phys. 79 (1998) 7227. https://doi.org/10.1063/1.361439.
[126] K. S. Suraj, P. Bharathi, V. Prahlad, S. Mukherjee, Near cathode optical emission spectroscopy in N2–H2 glow discharge plasma, Surf. Coat. Technol. 202 (2007) 301–309. https://doi.org/10.1016/J.SURFCOAT.2007.05.063.
[127] P. Erman, A. Karawajczyk, E. Rachlew-Källne, J. Rius i Riu, M. Stankiewicz, K. Yoshiki Franzén, L. Veseth, Neutral dissociation by non-rydberg doubly excited states, Phys. Rev. A. 60 (1999) 426. https://doi.org/10.1103/PhysRevA.60.426.
[128] E. J. Mittemeijer, M. A. J. Somers Thermochemical surface engineering of steels, Cambridge: Woodhead Publishing, Sawston, 2015.
[129] H. Ohmi, J. Sato, Y. Shirasu, T. Hirano, H. Kakiuchi, K. Yasutake, Significant improvement of copper dry etching property of a high-pressure hydrogen-based plasma by nitrogen gas addition, ACS Omega 4 (2019) 4360–4366. https://doi.org/10.1021/acsomega.8b03163.
[130] Q. J. Guo, Y. J. Zhao, G. H. Ni, L. Li, Q. F. Lin, S. Y. Sui, H. B. Xie, W. X. Duan, N2/H2 non-thermal transferred arc plasma nitriding treatment of stainless steel at atmospheric pressure, Plasma Chem. Plasma Process. 40 (2020) 1525–1537. https://doi.org/10.1007/s11090-020-10103-0.
[131] J. H. Van Helden, P. J. Van Den Oever, W. M. M. Kessels, M. C. M. Van De Sanden, D. C. Schram, R. Engeln, Production mechanisms of NH and NH2 radicals in N2-H2 plasmas, J. Phys. Chem. A. 111 (2007) 11460–11472. https://doi.org/10.1021/jp0727650.
[132] M. Sode, W. Jacob, T. Schwarz-Selinger, H. Kersten, Measurement and modeling of neutral, radical, and ion densities in H2-N2-Ar plasmas, J. Appl. Phys. 117 (2015) 083303. https://doi.org/10.1063/1.4913623.
[133] A. Saeed, A. W. Khan, F. Jan, M. Abrar, M. Khalid, M. Zakaullah, Validity of “sputtering and re-condensation” model in active screen cage plasma nitriding process, Appl. Surf. Sci. 273 (2013) 173–178. https://doi.org/10.1016/J.APSUSC.2013.02.008.
[134] H. Martínez, F. B. Yousif, Electrical and optical characterization of pulsed plasma of N2–H2, Eur. Phys. J. D 2008 463. 46 (2008) 493–498. https://doi.org/10.1140/EPJD/E2008-00006-6.
[135] T. Moskalioviene, A. Galdikas, The effect of hydrogen on plasma nitriding of austenitic stainless steel: Kinetic modeling, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46 (2015) 5588–5595. https://doi.org/10.1007/s11661-015-3183-y.
[136] Z. X. Cao, H. Oechsner, Effect of concurrent "N" _"2" ^"+" and N+ ion bombardment on the plasma-assisted deposition of carbon nitride thin film, J. Vac. Sci. Technol. A 22 (2004) 321. https://doi.org/10.1116/1.1644112.
[137] K. T. Rie, T. Lampe, Thermochemical surface treatment of titanium and titanium alloy Ti–6Al–4V by low energy nitrogen ion bombardment, Mater. Sci. Eng. 69 (1985) 473–481. https://doi.org/10.1016/0025-5416(85)90349-0.
[138] M. B. Karamiş, Wear properties of steel plasma nitrited at high temperatures, Mater. Sci. Eng. A. 168 (1993) 49–53. https://doi.org/10.1016/0921-5093(93)90269-K.
[139] C. Nouveau, P. Steyer, K. R. Mohan Rao, D. Lagadrillere, Plasma nitriding of 90CrMoV8 tool steel for the enhancement of hardness and corrosion resistance, Surf. Coat. Technol. 205 (2011) 4514–4520. https://doi.org/10.1016/J.SURFCOAT.2011.03.087.
[140] L. Wang, S. Ji, J. Sun, Effect of nitriding time on the nitrided layer of AISI 304 austenitic stainless steel, Surf. Coat. Technol. 200 (2006) 5067–5070. https://doi.org/10.1016/J.SURFCOAT.2005.05.036.
[141] A. Fossati, F. Borgioli, E. Galvanetto, T. Bacci, Glow-discharge nitriding of AISI 316L austenitic stainless steel: influence of treatment time, Surf. Coat. Technol. 200 (2006) 3511–3517. https://doi.org/10.1016/J.SURFCOAT.2004.10.122.
[142] L. Wang, X. Xu, J. Xu, Y. Shi, Characteristics of low pressure plasma arc source ion nitrided layer on austenitic stainless steel at low temperature, Thin Solid Films 391 (2001) 11–16. https://doi.org/10.1016/S0040-6090(01)00969-5.
[143] D. C. Wen, Influence of layer microstructure on the corrosion behavior of plasma nitrided cold work tool steel, J. Mater. Sci. 45 (2010) 1540–1546. https://doi.org/10.1007/S10853-009-4121-4/FIGURES/8.
[144] E. J. Miola, S. D. D. Souza, P. A. P. Nascente, M. Olzon-Dionysio, C. A. Olivieri, D. Spinelli, Studies on plasma-nitrided iron by scanning electron microscopy, glancing angle x-ray diffraction, and x-ray photoelectron spectroscopy, J. Vac. Sci. Technol. A 18 (2000) 2733. https://doi.org/10.1116/1.1314392.
[145] Y. Li, L. Wang, J. Xu, D. Zhang, Plasma nitriding of AISI 316L austenitic stainless steels at anodic potential, Surf. Coat. Technol. 206 (2012) 2430–2437. https://doi.org/10.1016/J.SURFCOAT.2011.10.045.
[146] J. C. Díaz-Guillén, M. Naeem, H. M. Hdz-García, J. L. Acevedo-Davila, M. R. Díaz-Guillén, M. A. Khan, J. Iqbal, A. I. Mtz-Enriquez, Duplex plasma treatment of AISI D2 tool steel by combining plasma nitriding (with and without white layer) and post-oxidation, Surf. Coat. Technol. 385 (2020) 125420. https://doi.org/10.1016/J.SURFCOAT.2020.125420.
[147] E. Briscoe, J. Feldman, Conceptual complexity and the bias/variance tradeoff, Cognition 118 (2011) 2–16. https://doi.org/10.1016/J.COGNITION.2010.10.004.
[148] G. Panchal, A. Ganatra, Y. P. Kosta, D. Panchal, Searching most efficient neural network architecture using Akaike’s information criterion (AIC), Int. J. Comput. Appl. 1 (2010).
[149] A. A. Neath, J. E. Cavanaugh, The Bayesian information criterion: background, derivation, and applications, Wiley Interdiscip. Rev. Comput. Stat. 4 (2012) 199–203. https://doi.org/10.1002/WICS.199.
[150] J. Kuha, AIC and BIC: Comparisons of assumptions and performance, Sociol. Methods Res. 33 (2016) 188–229. https://doi.org/10.1177/0049124103262065.
[151] ASTM, G99-04 Standard test method for wear testing with a pin-on-disk apparatus, Wear (2004) 1–5.
[152] Y. Wang, Y. Yang, H. Yang, M. Zhang, S. Ma, J. Qiao, Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy, Mater. Chem. Phys. 210 (2018) 233–239. https://doi.org/10.1016/J.MATCHEMPHYS.2017.05.029.
[153] X. Chen, L. Yao, J. Guo, L. Tang, C. Zhang, M. Yan, Improvement in surface properties of M50NiL steel by plasma nitriding with rare earth addition, J. Fail. Anal. Prev. 19 (2019) 1420–1427. https://doi.org/10.1007/S11668-019-00737-4/TABLES/2.
[154] R. L. Dalcin, A. D. S. Rocha, V. V. D. Castro, J. C. K. D. Neves, C. H. D. Silva, R. D. Torres, R. M. Nunes, C. D. F. Malfatti, Microstructure and wear properties of a low carbon bainitic steel on plasma nitriding at different N2-H2 Gas mixtures, Mater. Res. 25 (2021). https://doi.org/10.1590/1980-5373-MR-2021-0447.
[155] M. B. Karamiş, An investigation of the properties and wear behaviour of plasma-nitrided hot-working steel (H13), Wear 150 (1991) 331–342. https://doi.org/10.1016/0043-1648(91)90327-Q.
[156] R. Wang, H. J. Mei, R. S. Li, Q. Zhang, T. F. Zhang, Q. M. Wang, Friction and wear behavior of AlTiN-coated carbide balls against SKD11 hardened steel at elevated temperatures, Acta Metall. Sin. (English Lett. 31 (2018) 1073–1083. https://doi.org/10.1007/S40195-018-0753-1.
[156] N. P. Suh, An overview of the delamination theory of wear, Wear 44 (1977) 1–16. https://doi.org/10.1016/0043-1648(77)90081-3.
[158] Q. Luo, Temperature dependent friction and wear of magnetron sputtered coating TiAlN/VN, Wear 271 (2011) 2058–2066. https://doi.org/10.1016/J.WEAR.2011.01.054.
[159] G. Li, Q. Peng, C. Li, Y. Wang, J. Gao, S. Chen, J. Wang, B. Shen, Effect of DC plasma nitriding temperature on microstructure and dry-sliding wear properties of 316L stainless steel, Surf. Coat. Technol. 202 (2008) 2749–2754. https://doi.org/10.1016/J.SURFCOAT.2007.10.002.
[160] Z. Xiao, S. Yu, Y. Li, S. Ruan, L. B. Kong, Q. Huang, Z. Huang, K. Zhou, H. Su, Z. Yao, W. Que, Y. Liu, T. Zhang, J. Wang, P. Liu, D. Shen, M. Allix, J. Zhang, D. Tang, Materials development and potential applications of transparent ceramics: A review, Mater. Sci. Eng. R Reports 139 (2020) 100518. https://doi.org/10.1016/J.MSER.2019.100518.
[161] L. W. Lan, H. J. Yang, R. P. Guo, X. J. Wang, M. Zhang, P. K. Liaw, J. W. Qiao, High-temperature sliding wear behavior of nitrided Ni45(CoCrFe)40(AlTi)15 high-entropy alloys, Mater. Chem. Phys. 270 (2021) 124800. https://doi.org/10.1016/J.MATCHEMPHYS.2021.124800.
[162] F. H. Stott, High-temperature sliding wear of metals, Tribol. Int. 35 (2002) 489–495. https://doi.org/10.1016/S0301-679X(02)00041-5.

無法下載圖示 全文公開日期 2027/09/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2032/09/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE