簡易檢索 / 詳目顯示

研究生: 廖浩廷
Hao-Ting Liao
論文名稱: 基於人體骨架之即時羽球球種辨識
Real-Time Badminton Stroke Classification Based on Human Pose Estimation
指導教授: 林淵翔
Yuan-Hsiang Lin
口試委員: 陳維美
Wei-Mei Chen
林昌鴻
Chang-Hong Lin
陳儷今
Li-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 71
中文關鍵詞: 羽球影像處理人體骨架擊球偵測球種辨識深度學習
外文關鍵詞: Badminton, Image Processing, Human Pose Estimation,, Hit Detection,, Stroke Classification, Deep Learning
相關次數: 點閱:523下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章、 緒論 1 1.1 動機與目的 1 1.2 文獻探討 2 1.2.1 基於感測器的羽球相關研究 2 1.2.2 基於影像的羽球相關研究 2 1.2.3 相關論文比較 5 1.3 章節介紹 6 第二章、 研究背景 7 2.1 人體姿態估計(Human Pose Estimation) 7 2.1.1 單人姿態估計(Single-Person Pipelines) 8 2.1.2 多人姿態估計(Multi-Person Pipelines) 8 2.2 OpenPose 8 2.3 時序型神經網路 11 2.3.1 循環神經網路(Recurrent Neural Network) 11 2.3.2 長短期記憶(Long Short-Term Memory) 12 2.3.3 雙向長短期記憶(Bidirectional Long Short-Term Memory) 13 2.4 羽球動作分類 14 第三章、 研究方法 19 3.1 系統介紹 19 3.1.1 硬體架構 19 3.1.2 演算法流程 19 3.2 資料錄製流程 20 3.2.1 場地配置 20 3.2.2 實驗流程 21 3.2.3 實驗對象 21 3.3 球場偵測 24 3.4 擊球偵測 30 3.4.1 上手球擊球時間點偵測 35 3.4.2 非上手球擊球時間點偵測 36 3.5 球種辨識 38 第四章、 實驗結果與討論 40 4.1 離線資料驗證 40 4.1.1 離線擊球偵測演算法 40 4.1.2 離線羽球球種辨識 43 4.2 即時資料驗證 47 4.2.1 即時擊球偵測演算法 48 4.2.2 即時羽球球種辨識 49 4.3 成果分析與討論 50 4.3.1 相關深度學習網路比較 50 4.3.2 視窗大小對球種辨識的影響 51 4.3.3 不同相機視角比較 53 4.3.4 人體骨架關鍵點偵測準確度與球種辨識準確度的探討 54 第五章、 結論與未來展望 55 參考文獻 56 附錄一 60

[1] 教育部體育署, "中華民國 110 年運動現況調查結案報告書".
[2] Badminton World Federation players, "Tai Tzu Ying," 2022. [Online]. Available: https://bwfbadminton.com/player/61427/tai-tzu-ying
[3] Badminton World Federation players, "Chou Tien Chen," 2022. [Online]. Available: https://bwfbadminton.com/player/34810/chou-tien-chen
[4] W. Lu and J. J. Little, "Simultaneous Tracking and Action Recognition Using the PCA-HOG Descriptor," The 3rd Canadian Conference on Computer and Robot Vision (CRV'06), pp. 6-6, 2006, doi: 10.1109/CRV.2006.66.
[5] S. Ji, W. Xu, M. Yang, and K. Yu, "3D Convolutional Neural Networks for Human Action Recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 221-231, Jan. 2013, doi: 10.1109/TPAMI.2012.59.
[6] Z. Wang, M. Guo, and C. Zhao, "Badminton Stroke Recognition Based on Body Sensor Networks," IEEE Transactions on Human-Machine Systems, vol. 46, no. 5, pp. 769-775, Oct. 2016, doi: 10.1109/THMS.2016.2571265.
[7] Y. Wang, M. Chen, X. Wang, R. H. M. Chan, and W. J. Li, "IoT for Next-Generation Racket Sports Training," IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4558-4566, Dec. 2018, doi: 10.1109/JIOT.2018.2837347.
[8] J. Lin, C. Chang, T. -U. Ik, and Y. -C. Tseng, "Sensor-based Badminton Stroke Classification by Machine Learning Methods," 2020 International Conference on Pervasive Artificial Intelligence (ICPAI), pp. 94-100, 2020, doi: 10.1109/ICPAI51961.2020.00025.
[9] Y. Yoshikawa, H. Shishido, M. Suita, Y. Kameda, and I. Kitahara, "Shot Detection Using Skeleton Position in Badminton Videos," International Workshop on Advanced Imaging Technology (IWAIT), Mar. 2021, doi: 10.1117/12.2590407.
[10] S. Ramasinghe, K. G. Manosha Chathuramali, and R. Rodrigo, "Recognition of Badminton Strokes Using Dense Trajectories," 7th International Conference on Information and Automation for Sustainability, pp. 1-6, 2014, doi: 10.1109/ICIAFS.2014.7069620.
[11] W. Chu and S. Situmeang, "Badminton Video Analysis Based on Spatiotemporal and Stroke Features," 2017 ACM on International Conference on Multimedia Retrieval (ICMR '17), pp. 448-451, 2017, doi: 10.1145/3078971.3079032.
[12] A. Ghosh, S. Singh, and C. V. Jawahar, "Towards Structured Analysis of Broadcast Badminton Videos," 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 296-304, 2018, doi: 10.1109/WACV.2018.00039.
[13] N. Promrit and S. Waijanya, "Model for Practice Badminton Basic Skills by Using Motion Posture Detection from Video Posture Embedding and One-shot Learning Technique," 2019 2nd Artificial Intelligence and Cloud Computing Conference (AICCC 2019), pp. 117-124, 2019, doi: 10.1145/3375959.3375981.
[14] N. A. Rahmad and M. A. As’ari, "The new Convolutional Neural Network (CNN) Local Feature Extractor for Automated Badminton Action Recognition on Vision Based Data," Journal of Physics: Conference Series, vol. 1529, no. 2, 2020, doi: 10.1088/1742-6596/1529/2/022021.
[15] A. Raj, P. Consul, and S. K. Pal, "Fast Neural Accumulator (NAC) Based Badminton Video Action Classification," SAI Intelligent Systems Conference, pp. 452-467, Sep. 2020, doi: 10.1007/978-3-030-55180-3_34.
[16] S. M. Cabahug, "基於人體姿勢估計與機器學習的羽球球種分類," 國立臺灣科技大學碩士論文, 2022.
[17] Q. Dang, J. Yin, B. Wang, and W. Zheng, "Deep Learning Based 2D Human Pose Estimation: A Survey," Tsinghua Science and Technology, vol. 24, no. 6, pp. 663-676, Dec. 2019, doi: 10.26599/TST.2018.9010100.
[18] Z. Cao, G. Hidalgo, T. Simon, S. -E. Wei, and Y. Sheikh, "OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 172-186, 1 Jan. 2021, doi: 10.1109/TPAMI.2019.2929257.
[19] S. Hochreiter and J. Schmidhuber, "Long Short-term Memory," Neural computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
[20] A. Graves and J. Schmidhuber, "Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network Architectures," Neural Networks, vol. 18, no. 5-6, pp. 602–610, June/July 2005, doi: 10.1016/j.neunet.2005.06.042.
[21] M. Schuster and K. K. Paliwal, "Bidirectional Recurrent Neural Networks," IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, Nov. 1997, doi: 10.1109/78.650093.
[22] VICTOR 勝利體育, "羽球教室," 2022. [Online]. Available: https://www.victorsport.com.tw/badmintonaz.html?cid=139&order=latest
[23] 廖焜福, "羽球運動" 國立體育學院碩士論文, 2001.
[24] 羽球筆記, "National Badminton Rating Program (NBRP)," 2021. [Online]. Available: http://www.badmintonnote.com.tw/Home/grades
[25] Z. Zivkovic, "Improved Adaptive Gaussian Mixture Model for Background Subtraction," 17th International Conference on Pattern Recognition (ICPR 2004), vol. 2, pp. 28-31, 2004, doi: 10.1109/ICPR.2004.1333992.
[26] OpenCV, "Color conversions," 2022. [Online]. Available: https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
[27] J. Matas, C. Galambos, and J. Kittler, "Robust Detection of Lines Using The Progressive Probabilistic Hough Transform," Computer Vision and Image Understanding, vol. 78, no. 1, pp. 119–137, 2000, doi: 10.1006/cviu.1999.0831.
[28] R. Liu et al., "Table Tennis Stroke Recognition Based on Body Sensor Network," Internet and Distributed Computing Systems, Cham, pp. 1-10, Nov. 2019, doi: 10.1007/978-3-030-34914-1_1.
[29] J. Donahue et al., "Long-Term Recurrent Convolutional Networks for Visual Recognition and Description," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 4, pp. 677-691, 1 Apr. 2017, doi: 10.1109/TPAMI.2016.2599174.
[30] K. Simonyan and A. Zisserman, "Two-Stream Convolutional Networks for Action Recognition in Videos," Advances in neural information processing systems 27 (2014), vol. 1, pp. 568–576, 2014.
[31] H. Yan, B. Hu, G. Chen, and E. Zhengyuan, "Real-Time Continuous Human Rehabilitation Action Recognition Using OpenPose and FCN," 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), pp. 239-242, 2020, doi: 10.1109/AEMCSE50948.2020.00058.
[32] J. Zhou, Y. Lu, H. Dai, H. Wang, and H. Xiao, "Sentiment Analysis of Chinese Microblog Based on Stacked Bidirectional LSTM," IEEE Access, vol. 7, pp. 38856-38866, 2019, doi: 10.1109/ACCESS.2019.2905048.
[33] D. Utebayeva et al., "Multi-Label UAV Sound Classification Using Stacked Bidirectional LSTM," 2020 Fourth IEEE International Conference on Robotic Computing (IRC), pp. 453-458, 2020, doi: 10.1109/IRC.2020.00086.
[34] A. Graves, N. Jaitly, and A. Mohamed, "Hybrid Speech Recognition with Deep Bidirectional LSTM," 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 273-278, 2013, doi: 10.1109/ASRU.2013.6707742.
[35] D. B. Waddell and B. A. Gowitzke, "Biomechanical Principles Applied to Badminton Power Strokes," 18 International Symposium on Biomechanics in Sports (2000), pp. 817-822, 2000.
[36] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, "Learning Spatiotemporal Features with 3D Convolutional Networks," IEEE international conference on computer vision, pp. 4489-4497, 2015, doi: 10.1109/ICCV.2015.510.
[37] J. Donahue et al., "Long-Term Recurrent Convolutional Networks for Visual Recognition and Description," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 4, pp. 677-691, Apr. 2017, doi: 10.1109/TPAMI.2016.2599174.
[38] T. Gema, F. Á. Iván, B. J. Carlos, K. Miran, and C. David, "Statistical Differences in Set Analysis in Badminton at the RIO 2016 Olympic Games," Frontiers in Psychology, vol. 10, pp. 731, Apr. 2019, doi: 10.3389/fpsyg.2019.00731.

無法下載圖示 全文公開日期 2027/09/07 (校內網路)
全文公開日期 2027/09/07 (校外網路)
全文公開日期 2027/09/07 (國家圖書館:臺灣博碩士論文系統)
QR CODE