簡易檢索 / 詳目顯示

研究生: 謝昕祐
Hsin-Yu Hsieh
論文名稱: 八字電感應用於PLL的QVCO與DIVIDER 並最佳化萃取等效電感模型
The Optimization of Extraction Equivalent Inductance Model with Implementation of 8-shaped Inductors in QVCO and Divder in PLL
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 張勝良
Sheng-Lyang Jang
徐茂修
Mao-Hsiu Hsu
黃進芳
Jhin-Fang Huang
王煥宗
Huan-Chun Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 126
中文關鍵詞: 八字電感電感等效模型八字電感電感等效模型八字電感正交四相位震盪器
外文關鍵詞: 8-shaped Inductor, Inductor Circuit Model, 8-shaped Inductor Circuit Model, QVCO Using Trifilar Transformers Adapted From 8-shaped
相關次數: 點閱:289下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在RF射頻收發機中,頻率合成器扮演著重要的角色,其內部包含了相位偵測器(PFD)、充電幫浦(CP)、迴路濾波器(LF)、壓控振盪器( VCO)、除頻器(FD)、。因為要追求低功耗、低相位雜訊與寬鎖定範圍的除頻器和震盪器特性,所以本篇論文呈現出四相位的震盪器(QVCO)和注入鎖定除頻器(ILFD)的設計,並提供一種最佳化方式萃取電感模型參數,以輔助設計電路時之所需電感。

    第一部分提出了一個新的正交壓控振盪器(QVCO),使用兩個差動的壓控振盪器 VCO 並帶有兩個 8 字形電感器,其中包括兩匝次級電感器。 差動器sub-VCO 確實使用了三級互感電感。 次級電感處於交叉耦合連接中以強制正交從兩個子 VCO 產生。在 TSMC 0.18 μm CMOS 工藝中QVCO的面積為 1,197 × 1,183 mm2。 並產生0.6 V 的電源和 2.4 mW 的功耗,在3.23 GH時的偏移頻率量測到1 MHz 的相位雜訊 為 −118.76 dBc / Hz,QVCO的figure of merit(FOM)為−185.14 dBc / Hz。
    設計的第二部分提供一種電感參數萃取模型方法。精確的螺旋電感電路模型和參數提取在單晶片微波集成電路(MMIC)設計中非常重要。 本文提出了一種直接由S參數系統化建模在有損基底上的8字形電感器,並以最佳化方式來達成。

    最後的部分是採用了三個真實電路分別為兩個耦合注入鎖定壓控震盪器與一個八字電感除頻器,三個電路都是採用8字電感去做設計,利用設計出來的等效模型去萃取相對應的數值,並且套用回原基本電路,進而比較其差異。


    In the RF transceiver, frequency synthesizer plays an important role, its blocks include Phase Frequency Detector (PFD), Charge Pump (CP), Loop Filter (LF), Voltage Controlled Oscillator (VCO), Frequency Divider (FD), Frequency Multiplier (FM) and frequency synthesizer can be used as a Frequency Shift Keying demodulate (FSK). To pursue low-power, low phase noise, and wide locking range include of Divider and VCO, so this thesis presents the design of a quadrature voltage-controlled oscillator (QVCO) and an injection-locked frequency divider (ILFD) and provides an optimized way to extract the inductor model parameters to assist in the design of the required inductance of the circuit.

    The first part is a new quadrature voltage-controlled oscillator (QVCO) with two differential VCOs with an 8-shaped inductor with two lobes, inside which a two-turn secondary inductor is included. The differential sub-VCO uses a trifilar inductor. The secondary inductors are in cross-coupled connection to enforce the quadrature generation from the two sub-VCOs. The die area of the QVCO in the TSMC 0.18 μm CMOS process is 1.197 ×1.183 mm2. At the supply of 0.6 V and the power consumption of 2.4 mW, at 1MHz offset frequency, the measured phase noise of the VCO at 3.23 GHz is −118.76 dBc/Hz, and the QVCO figure of merit is−185.14 dBc/Hz.

    The second part of the design is the accurate circuit model of inductor and parameter extraction for spiral inductors is very important in monolithic microwave integrated circuit (MMIC) design. This chapter presents a systematic methodology for modeling on-chip 8-shaped inductors over a lossy substrate directly from S-parameter simulations. The model implementation neither requires precise knowledge of geometry or the fabrication process.

    The last part is the use of 8-shaped inductor models for two coupled injection-locked voltage-controlled oscillators and an eight-shaped inductor frequency divider. The three circuits are designed with eight-shaped inductors, and the equivalent model is designed to Extract the corresponding value and apply it back to the original basic circuit to compare the differences.

    中文摘要 I Abstract III 致謝 V Table of Contents VI List of Figures VIII List of Tables XIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 3 Chapter 2 Principles and Design Considerations of Voltage Controlled Oscillators 5 2.1 Introduction 5 2.2 The Oscillators Theory 6 2.2.1 Feedback Oscillators (Two port) 7 2.2.2 Negative Resistance and Resonator (One port) 10 2.3 Category of Oscillators 13 2.3.1 Ring Oscillator 13 2.3.2 LC-Tank Oscillator 18 2.4 Design Concepts of Voltage-Controlled Oscillator 22 2.4.1 Parameters of a Voltage-Controlled Oscillator 23 2.4.2 Phase Noise 25 2.5 Passive Components Design in VCO 32 2.5.1 Inductor Design 32 2.5.2 Transformer Design 43 2.5.3 Capacitor Design 49 2.5.4 MOS Varactor Design 50 2.5.5 Resistor Design 55 Chapter 3 NMOS QVCO Using Trifilar Transformers Adapted From 8-shaped Inductors 56 3.1 Introduction 56 3.2 Circuit Design Circuit Design 58 3.3 Measurement and Discussion 66 Chapter 4 Parameter Extraction for Equivalent Circuit Model of RF Twisted Inductors 69 4.1 Introduction 69 4.2 Parameter Extraction of Inductor Circuit Model 71 4.3 Parameter Extraction Of 8-Shaped Inductor Circuit Model 74 Chapter 5 Circuit Simulation Via the 8-shaped Inductor Circuit Model 96 5.1 Low Voltage NMOS VCO Using a Multi-path 8-shaped Transformer Feedback 96 5.2 Voltage and Current-mode Injection-Locked Frequency Divider Using a 8-shaped Inductor 100 5.3 Low Phase Noise CMOS Using a New 8-shaped Transformer Resonator 104 Chapter 6 Conclusions 109 References 110

    [1] S.-L. Jang, C.-C. Shih, C.-C. Liu, and M.-H. Juang, “A 0.18 CMOS quadrature VCO using the quadruple push-push technique,” IEEE Microw.Wireless Compon. Lett., vol. 20, no. 6, pp. 343–345, Jun. 2010.
    [2] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, and M.-H. Juang, “A low-voltage quadrature CMOS VCO based on voltage-voltage feedback topology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 696–698, Dec. 2006.
    [3] S.-L. Jang, R.-K. Yang, C.-W. Chang, M.-H. Juang, and C.-C. Liu,”Dual-band transformer-coupled quadrature injection-locked frequency dividers,” Microw Opt Technol Lett., pp.1561-1564, July, 2011.
    [4] A. W. L. Ng and H. C. Luong, “A 1-V 17-GHz 5-mW CMOS quadrature VCO based on transformer coupling,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1933–1941, Sep. 2007.
    [5] K.-W. Cheng and Y.-R. Tseng, “5 GHz CMOS quadrature VCO using trifilar-transformer-coupling technology,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 717–719, Sep. 2016.
    [6] J.-S. Syu, C. C. Meng, and G.-W. Huang, “SiGe HBT quadrature VCO utilizing trifilar transformers,” in IEEE ASSCC Dig., 2008, pp. 465–468.
    [7] J.-S. Syu, H.-L. Lu, and C. Meng, “A 0.6-V 30 GHz CMOS quadrature VCO using microwave 1:1:1 trifilar transformer,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 88-90, 2012.
    [8] L. Fanori, A. Mahmoud, T. Mattsson, P. Caputa, S. Rämö, and P. Andreani, “A 2.8-to5.8 GHz harmonic VCO in a 28 nm UTBB FD-SOI CMOS process,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., 2015, pp. 195–198.
    [9] F. Song, Y. Zhao, B. Wu, L. Tang, L. Lin, and B. Razavi, “16.5 A fractional-N synthesizer with 110fsrms jitter and a reference quadrupler for wideband 802.11ax,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2019, pp. 264–266.
    [10] N. M. Neihart, D. J. Allstot, M. Miller and P. Rakers, "Twisted transformers for low coupling RF and mixed signal applications," IEEE Int. Symp. Circuits and Systems, Taipei, 2009, pp. 429-432.
    [11] P. Wang et al., "A low phase-noise class-C VCO using novel 8-shaped transformer," 2015 IEEE Int. Symp. Circuits and Systems (ISCAS), Lisbon, 2015, pp. 886-889.
    [12] A. Ximenes, G. Vlachogiannakis, and R. B. Staszewski, “An ultracompact 9.4-14.8-GHz transformer-based fractional-N all-digital PLL in 40-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4241–4254, Nov. 2017.
    [13] X. Chen, Y. Hu, T. Siriburanon, J. Du, R. B. Staszewski and A. Zhu, "A tiny c omplementary oscillator with 1/f3 noise reduction using a triple-8-shaped transformer," in IEEE Solid-State Circuits Letters, vol. 3, pp. 162-165, 2020.
    [14] J.-S. Syu, C. Meng, K.-C. Tsung, and G.-W. Huang, “5 GHz quadrature voltage-controlled oscillator using trifilar transformers,” Electron. Lett., vol. 44, no. 9, p. 562, 2008.
    [15] T.-H. Huang and Y.-R. Tseng, “A 1 V 2.2 mW 7 GHz CMOS quadrature VCO using current-reuse and cross-coupled transformer-feedback technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 10, pp. 698–700, Oct. 2008.
    [16] J. Wei and Z. Wang, "Frequency-independent T equivalent circuit for on-chip spiral inductors," IEEE Electron. Device Lett., vol. 31, no. 9, pp. 933-935, Sept. 2010.
    [17] C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE Trans. Electron Devices, vol. 47, Mar. 2000, pp. 560-568.
    [18] Y. Ahn, S. Kim, J. Chun and B. Kim, "Efficient scalable modeling of double-π Equivalent circuit for on-chip spiral inductors," IEEE Trans. Microw. Theory Tech., vol. 57, no. 10, pp. 2289-2300, Oct. 2009.
    [19] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
    [20]O. Tesson, Member IEEE "High Quality Monolithic 8-shaped Inductors for Silicon RF IC Design" NXP Semiconductors, 2 Esplanade Anton Philips, Campus EffiScience, Colombelles, BP 20000, 14906 Caen Cedex 9, France

    無法下載圖示 全文公開日期 2023/09/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE