簡易檢索 / 詳目顯示

研究生: 林冠佑
Guan-You Lin
論文名稱: 基於網路攝影機之非接觸式脈搏量測與移動狀態偵測系統
A Real-Time Contactless Pulse Rate and Motion Status Monitoring System Based on IP-Camera
指導教授: 林淵翔
Yuan-Hsiang Lin
口試委員: 周迺寬
Nai-Kuan Chou
陳維美
Wei-Mei Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 75
中文關鍵詞: 網路攝影機非接觸式脈搏量測活動偵測膚色辨識移動指標
外文關鍵詞: IP-Camera, motion status monitoring, complexion tracking, rPPG, motion index
相關次數: 點閱:293下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

心率是一種常見的臨床指標,靜態心率(Resting Heart Rate)是指人體在休息狀態下的心跳速度,反映著身體的當下狀態。大多數學者認為當靜態心率過快時,人體健康可能出現問題。若能有效且方便的量測日常的靜態心率,將可有效的提醒受測者生理狀態的變化,預防心血管疾病死亡的發生。發展無感的非接觸式量測技術是未來技術的趨勢,可以減少受測者量測過程中的不適與活動限制。在網路涵蓋率提高的影響下,網路攝影機的安裝相對方便,並可以達到遠距連線,具有高便利性與市場商機。
本論文將以床邊生理監控為主軸,嘗試利用網路攝影機為開發平台,建構出一套適用於長期監控的非接觸式脈搏量測與移動狀態偵測系統。藉由網路攝影機鏡頭拍攝影像,透過膚色辨識影像處理演算法追蹤並定位出人臉或膚色部位的位置,擷取膚色區塊的rPPG (remote Photoplethysmography)訊號,推算出脈搏率。此外,本論文也透過分析量測部位的位置變化,偵測出受試者當下的移動狀態。並將移動狀態轉換為移動參考指標以避免推算含有大量移動雜訊的rPPG脈搏訊號,提升即時脈搏率量測準確度。
經過模擬真實床邊監控的日間與夜間量測實驗證實,所有受試者在臉部動態量測實驗中,其脈搏率誤差範圍為+4.40 bpm至-5.05 bpm。並可依照受試者移動幅度大小,偵測並分類出移動狀態。而在後頸部靜態量測實驗中,其脈搏率誤差範圍為+4.30 bpm至-4.36 bpm。實驗結果顯示,本論文成功於網路攝影機平台上建構出一套脈搏與活動狀態監控系統,並有效降低偶發性移動對準確度的影響。


A resting heart rate refers to the heart rate of a body at rest, which reflects the current state of health. Most scholars believe that a rapid resting heart rate may adversely affect human health. If we can conveniently measure the daily resting heart rate, we can effectively notify the subjects of sudden changes in physiological status. The development of non-contact measurement technology is a future trend. This new development can reduce the discomfort and activity limitations of the subject during measurement. Under the influence of increasing network coverage, the installation of IP-Cameras is relatively convenient and long-distance connections can be achieved.
In this thesis, we use an IP-Camera to construct a contactless pulse rate measurement and motion status monitoring system. The remote photoplethysmography (rPPG) signal of the region of interest (ROI) tracked through complexion tracking algorithm is obtained to calculate the pulse rate. In addition, we detected the subject's motion status and proposed a motion reference index to avoid estimating the rPPG pulse signal containing motion artifacts.
Experiments performed in the daytime and nighttime to simulate bedside monitoring have all confirmed that the error range of participants’ pulse rate for facial dynamic movement experiment is between +4.40 to -5.05 bpm. In the posterior neck static experiment, the error range of pulse rate is +4.30 to -4.36 bpm. The experimental results convey that this thesis not only successfully constructed a pulse rate and motion monitoring system on an IP-Camera platform but also improved the impact of accidental movement on a subjects’ pulse rate.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章、 緒論 1 1.1 動機與目的 1 1.2 文獻探討 3 1.3 相關論文比較 5 1.4 論文架構 6 第二章、 研究背景 7 2.1 PPG定義與原理 7 2.2 傳統接觸式PPG訊號量測 8 2.3 非接觸式RPPG訊號量測 9 2.4 臉部偵測與追蹤 10 2.5 雜訊來源 12 2.6 PPG相關生理參數應用 12 第三章、 研究方法 13 3.1 系統介紹 13 3.2 人臉偵測與追蹤 16 3.2.1 動態追蹤區域選取 17 3.2.2 臉部偵測 19 3.2.3 感興趣區域(ROI)追蹤 21 3.2.4 ROI訊號擷取 23 3.3 移動狀態偵測 24 3.3.1. 中心座標位移量測 25 3.3.2. 移動狀態分類 25 3.3.3. 移動狀態穩定化 26 3.4 RPPG訊號處理 30 3.4.1. 正規化 31 3.4.2. 帶通濾波器 32 3.4.3. 移動平均演算法 33 3.5 脈搏訊號推算 34 3.5.1. 波谷偵測 35 3.5.2. 脈搏率計算 36 3.6 使用者介面設計 38 第四章、 實驗方法與結果討論 39 4.1 實驗流程 39 4.2 實驗設計與結果 41 4.2.1 實驗一 41 4.2.2 實驗二 48 4.3 結果討論 53 4.3.1 量測距離限制與雜訊影響 54 4.3.2 脈搏率瞬間變化影響 57 4.3.3 脈搏頻段量測範圍限制 58 第五章、 結論與未來展望 60 參考文獻 61

[1] K. Fox, N. Danchin, J. Lopez Sendon, J. Tardif and M. Tendera, “Resting Heart Rate in Cardiovascular Disease,” J. Am. Coll. Cardiol., vol. 50, no. 9, pp. 823–830, 2007.
[2] M. T. Cooney, E. Vartiainen, T. Laakitainen, A. Juolevi, A. Dudina, and I. M. Graham, “Elevated resting heart rate is an independent risk factor for cardiovascular disease in healthy men and women,” Am. Heart J., vol. 159, no. 4, p. 612–619.e3, 2010.
[3] 部會新聞, “國家通訊傳播委員會審議通過「普及偏鄉寬頻接取基礎建設補助作業要點」,經由前瞻基礎建設特別預算及業者合力投入,建構偏鄉高速寬頻網絡,帶動高速寬頻之創新服務至偏鄉,” 行政院, 2017. [Online]. Available: https://www.ey.gov.tw/Page/AE5575EAA0A37D70/0ae9413d-adb3-4e6d-983a-714676110b54.
[4] A. B. Hertzman, “The blood supply of various skins areas as estimated by the photoelectric plethysmograph,” Am. J. Physiol., vol. 124, pp. 328–340, 1938.
[5] C. Z. Wang and Y. P. Zheng, “Home-telecare of the elderly living alone using an new designed ear-wearable sensor,” in Proc. 5th Int. Workshop on Wearable and Implantable Body Sensor Networks, BSN2008, in conjunction with the 5th Int. Summer School and Symp. on Medical Devices and Biosensors, ISSS-MDBS 2008, 2008, pp. 71–74.
[6] S. Vogel, M. Hülsbusch, T. Hennig, V. Blazek, and S. Leonhardt, “In-ear vital signs monitoring using a novel microoptic reflective sensor,” IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 6, pp. 882–889, 2009.
[7] C. Takano and Y. Ohta, “Heart rate measurement based on a time-lapse image,” Med. Eng. Phys., vol. 29, no. 8, pp. 853–857, 2007.
[8] G. Cennini, J. Arguel, K. Akşit, and A. VanLeest, “Heart rate monitoring via remote photoplethysmography with motion artifacts reduction,” Opt. Express, vol. 18, no. 5, p. 4867, 2010.
[9] E. Jonathan and M. J. Leahy, “Cellular phone-based photoplethysmographic imaging,” J. Biophotonics, vol. 4, no. 5, pp. 293–296, 2011.
[10] D. Shao, Y. Yang, C. Liu, F. Tsow, H. Yu, and N. Tao, “Noncontact monitoring breathing pattern, exhalation flow rate and pulse transit time,” IEEE Trans. Biomed. Eng., vol. 61, no. 11, pp. 2760–2767, 2014.
[11] M. C. Li and Y. H. Lin, “A real-time non-contact pulse rate detector based on smartphone,” 4th Int. Symp. Next-Generation Electron. IEEE ISNE 2015, 2015.
[12] Y. C. Lin, N. K. Chou, G. Y. Lin, M. H. Li, and Y. H. Lin, “A real-time contactless pulse rate and motion status monitoring system based on complexion tracking,” Sensors (Switzerland), vol. 17, no. 7, 2017.
[13] T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, “Wearable Photoplethysmographic Sensors—Past and Present,” Electronics, vol. 3, no. 2, pp. 282–302, 2014.
[14] The Life Sensing Technology on your HELO, “Principle of PPG,” Helo band. [Online]. Available: http://www.buyhelo.com.au/helo-science/.
[15] H. Xiaowen and L. Muqing, “PPG6350 - Pulse Oximeter Based Heart Rate Monitor,” Columbia University, 2014. [Online]. Available: http://www.ee.columbia.edu/~kinget/EE6350_S14/PPG6350_Web/index.html.
[16] W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Opt. Express, vol. 16, no. 26, p. 21434, 2008.
[17] “Fujitsu Laboratories Develops Real-Time Pulse Monitor Using Facial Imaging : Fujitsu Global,” 2013. [Online]. Available: http://www.fujitsu.com/global/news/pr/archives/month/2013/20130318-01.html.
[18] S. Paschalakis and M. Bober, “A low cost FPGA system for high speed face detection and tracking,” Field-Programmable Technol. (FPT), 2003. Proceedings. 2003 IEEE Int. Conf., pp. 214–221, 2003.
[19] T. Nguyen, “Real-Time Face Detection and Tracking,” Electrical and Computer Engineering of Cornell University. December, 2012.
[20] Y. C. Lin and Y. H. Lin, “A study of color illumination effect on the SNR of rPPG signals,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 4301–4304, 2017.
[21] S. Kwon, J. Kim, D. Lee, and K. Park, “ROI analysis for remote photoplethysmography on facial video,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2015–November, pp. 4938–4941, 2015.
[22] D. McDuff, S. Gontarek, and R. W. Picard, “Improvements in remote cardiopulmonary measurement using a five band digital camera,” IEEE Trans. Biomed. Eng., vol. 61, no. 10, pp. 2593–2601, 2014.
[23] L. Terminelli, F. Carpignano, F. Carpignano, S. Merlo, P. A. Kyriacou, “Photoplethysmography and electrocardiography for real time evaluation of pulse transit time,” Fotonica AEIT Ital. Conf. Photonics Technol., pp. 2–5, 2014.
[24] Y. Chen, C. Lin, Y. Lin, and C. Zhao, “Non-invasive detection of alcohol concentration based on photoplethysmogram signals,” pp. 188–193, 2017.
[25] Z. H. Al-Tairi, R. W. Rahmat, M. Iqbal Saripan, and P. S. Sulaiman, “Skin segmentation using YUV and RGB color spaces,” J. Inf. Process. Syst., vol. 10, no. 2, pp. 283–299, 2014.
[26] G. DeHaan and V. Jeanne, “Robust pulse-rate from chrominance-based rPPG,” vol. 60, no. 10, pp. 1–9, 2013.
[27] T. Wartzek and C. Bruser, “Modeling of motion artifacts in contactless heart rate measurements,” Comput. Cardiol. (2010)., no. 1, pp. 931–934, 2013.
[28] Y. C. Lin and Y. H. Lin, “Step Count and Pulse Rate Detection Based on the Contactless Image Measurement Method,” IEEE Trans. Multimed., vol. 9210, no. c, 2018.
[29] “NONIN 4100 BLUETOOTH PATIENT MODULE - Turner Medical.” [Online].Available: http://www.turnermedical.com/NONIN_4100_BLUETOO
TH_PATIENT_MODULE_p/nonin_4100.htm.
[30] x-io Technologies, “x-IMU with Housing and Battery,” x-IMU PURCHASE, 2016. [Online]. Available: http://x-io.co.uk/x-imu/.

QR CODE