簡易檢索 / 詳目顯示

研究生: 李宇軒
Yu-Hsuan Li
論文名稱: 基於基因演算法及列權重交換之高速系統性極化碼的穿孔與校驗矩陣優化
Optimization of Puncturing and Parity-Check Matrix of High-Speed Systematic Polar Code Based on Genetic Algorithm and Row-Weight Exchanges
指導教授: 賴坤財
Kuen-Tsair Lay
口試委員: 賴坤財
Kuen-Tsair Lay
方文賢
Wen-Hsien Fang
曾德峰
Der-Feng Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 112
中文關鍵詞: 極化碼低密度同位檢驗碼碼率匹配穿孔基因演算法列權重交換
外文關鍵詞: Polar code, LDPC code, rate matching, Puncturing, genetic algorithm, Row-Weight Exchanges
相關次數: 點閱:263下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通訊技術日益發展,編碼技術受到相當大的重視。第三代合作夥伴計劃3GPP 在New Radio(NR)裡主張第五代通訊技術將圍繞在三大應用場景,它們分別是:增強型行動寬頻(eMBB)、大規模機器通訊(mMTC)和高可靠低時延通訊(URLLC)。
    eMBB通訊場景的錯誤更正碼,資料信道(data channel)採用低密度檢驗碼且控制信道(control channel)採用極化碼。然而極化碼有一個先天限制:碼長為2的冪次方數。為了使碼長能夠匹配各種場景,第五代行動通訊規格提出了三種碼率匹配機制:穿孔(puncturing)、縮短(shortening)及重複(repetition)。
    在本篇論文,我們只著重於探討如何針對碼率匹配中的穿孔這項機制,依照基因演算法做優化。我們使用穿孔對應的chromosomes參與基因演算法競爭,過程中發生選擇、突變、交越,並參照高斯近似法(Gaussian approximation, GA)選用區塊正確率為適配函數給分,世代將延續到chromosomes收斂或達到預先設定的最大世代數。
    除了前面提到的優化穿孔方案,本篇論文我們也針對不同的穿孔做法使用SC、SCL、BP及improved LDPC-like polar BP比較各自的性能及速率表現。再者,我們除了結合碼率匹配與LDPC-like polar BP解碼也發現電路架構可以再進一步化簡(我們稱其為improved LDPC-like polar BP)。最後若我們對凍結位與資訊位做「列權重交換(RWE)」,可降低將Polar code轉化成improved LDPC-like polar BP後檢驗點於冗餘運算中被移除的機率,也稍稍抑制了某些校驗節點度數。此機制有別於一般我們直接按照通道排序好壞選定資訊通道的做法,而是為了配合Tanner graph度數優化而嘗試不同選擇。此舉又可能在高訊雜比時幫助再進一步提升性能,我們也透過外帶資訊(extrinsic information)、通道容量(channel capacity)等理論分析及驗證列權重交換的效果。


    In modern communications, error correction coding is a key technology . The 3rd Generation Partnership Project 3GPP advocates, in New Radio(NR) that the 5th generation communication technology will focus on three major application scenarios, namely: Enhanced Mobile Broadband(eMBB), Massive Machine Type Communications(mMTC), and Ultra-reliable and Low Latency Communications(URLLC).
    For error correction in the eMBB communication scenario, the data channel uses low-density check codes(LDPC) and the control channel uses polar codes. However, polar codes suffer one inherent limitation that code length is a power of two. To make the code length match various scenarios, the fifth generation mobile communication specification proposes some rate matching mechanisms. There are three options : puncturing, shortening and repetition.
    In this paper, we only focus on how to optimize the puncturing mechanism in code rate matching according to the genetic algorithm. We use chromosomes corresponding to puncturing to participate in genetic algorithm competition. During the process of selection, mutation, and crossover, the block correct rate as computed by Gaussian approximation is selected to be an adaptation function. The generation will continue until the chromosomes converge or reach a preset maximum generation number.
    In addition to the optimized puncturing scheme mentioned earlier, we also use SC, SCL, BP and improved LDPC-like polar BP for different puncturing to compare their BLER performance and code-rate performance. Furthermore, in addition to combining rate matching and LDPC-like polar BP decoding, we also found that the circuit architecture can be further simplified (we call it the improved LDPC-like polar BP). Finally, if we perform "row-weight exchanges (RWE)" between the frozen bits and the information bits, the probability that the nodes will be removed from the redundant operation after the polar code is converted to improved LDPC-like polar BP will be reduced, and some of degrees of check node will be slightly suppressed. This mechanism tries different combinations to match with Tanner-graph degree optimization. This may in turn help to further improve performance at high signal-to-noise ratios. We also analyzed and verified the effect of row-weight exchanges through extrinsic information , channel capacity, and so on.

    摘要 i Abstract iii 致謝 v 目錄 vi 圖表索引 ix 中英文對照表 xiv 相關參數與符號索引 xvi 第一章 緒論 1 1.1前言 1 1.2 Polar code 2 1.3研究動機 3 1.4 本文架構、論文章節 4 第二章 相關技術與文獻 5 2.1 LDPC code 5 2.1.1 Tanner graph 6 2.1.2 LDPC BP解碼 7 2.2 Polar code 11 2.2.1 通道結合、分裂與極化 11 2.2.2 高斯近似法排序及快速區塊錯誤率估測 13 2.2.3 PW排序 16 2.2.4 5G碼率匹配及無能位元 18 2.2.5 Improved 5G Circular Buffer 23 2.2.6系統性編碼 24 2.2.7 LDPC-like polar BP解碼 26 2.3 基因演算法 30 2.3.1染色體 31 2.3.2適配函數 31 2.3.3複製 32 2.3.4突變 32 2.3.5交配、交越 32 第三章 採用基因演算法的5G極化碼穿孔選擇 33 第四章 Improved LDPC-like polar BP+穿孔及列權重交換機制 42 4.1 Improved LDPC-like polar BP +穿孔 42 4.2列權重交換機制 49 4.2.1稀疏列與緊密列效果分析 50 4.2.2節點度數的影響程度 54 4.2.3 列權重交換概念與優先交換規則 58 4.2.4列權重交換機制操作流程 60 4.2.5列權重交換機制門檻取值 67 第五章 實驗結果與討論 69 5.1不同穿孔方法 69 5.1.1 解碼性能 69 5.1.2 解碼延遲 76 5.2不同解碼方法及加入列權重交換機制 79 5.2.1 解碼性能 79 5.2.2 解碼延遲 81 5.2.3 節省的計算量 83 第六章 結論與未來展望 88 參考文獻 90

    [1]3rd Generation Partnership Project (3GPP), “Multiplexing and channel coding,” 3GPP 38.212 V.15.3.0, pp.13-28, 2018.
    [2] E. Arikan, “Channel Polarizaion: A Method for Constructing Capacity
    Achieving Codes for Symmetric Binary-Input Memoryless Channels,” IEEE
    Trans. Inf. Theory, vol. 56, no. 7, pp. 3051-3073, Jul. 2009.
    [3] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MITPress,
    1963.
    [4] Harish Vangala , Yi Hong , Emanuele Viterbo, “Efficient Algorithms for
    Systematic Polar Encoding” IEEE Communications Letters , vol. 20, pp. 17 -20, Jan. 2016.
    [5] R. Mori and T. Tanka, “Performance of Polar Codes with the Construction
    Using Density Evolution,” IEEE Communications Letters, vol. 13, no. 7, pp.
    519-521, July. 2009.
    [6] S. Y. Chung, T. Richardson, and R. Urbanke, “Analysis of Sum-Prodcut
    Decoding of Low-Density-Parity-Check Codes Using a Gaussian
    Approximation,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 657-670, Feb.
    2001.
    [7] Dr. Peiying Zhu” Polar Code for 5G NR”, Huawei Fellow, IEEE Fellow ITW
    2018, pp. 1-49, Nov. 29th, 2018.
    [8] V. Bioglio, F. Gabry, and I. Land, “Low-complexity Puncturing and
    Shorteninging of Polar code,” in Proc. IEEE Wireless Commun. Netw. Conf.
    (WCNC), San Francisco, CA, USA, pp.1-6, Mar. 2017.
    [9] R. Wang and R. Liu, ‘‘A novel Puncturing scheme for Polar code,’’ IEEE
    Commun. Lett., vol. 18, no. 12, pp. 2081–2084, Dec. 2014.
    [10] 傅晨祐 “5G 極化碼碼率匹配的優化” 國立台灣科技大學電子工程所,
    2019
    [11] Ahmed Elkelesh, Moustafa Ebada, Sebastian Cammerer and Stephan ten
    Brink, ‘‘Genetic Algorithm-based Polar Code Construction for the AWGN
    Channel,’’SCC 2019; 12th International ITG Conference on Systems,
    Communications and Coding ,2019
    [12] I. Tal and A. Vardy, "List Decoding of Polar Codes," IEEE Transactions on
    Information Theory, vol. 61, no. 5, pp. 2213-2226, 2015.
    [13] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, "LLR-Based Successive
    Cancellation List Decoding of Polar Codes," IEEE Transactions on Signal
    Processing, vol. 63, no. 19, pp. 5165-5179, 2015.
    [14] B. Yuan, K. Parhi, "Early stopping criteria for energy-efficient low-latency
    belief-propagation polar code decoders", Trans. Signal Process., vol. 62, pp.
    6496-6506, 2014.
    [15] Sebastian Cammerer , Moustafa Ebada , Ahmed Elkelesh and Stephan ten
    Brink, ‘‘Sparse Graphs for Belief Propagation Decoding of Polar code,’’
    IEEE ISIT, vol. 20, pp. 17 - 22, Jan. 2018.
    [16] 湯鈞凱“極化碼串接低密度同位檢測碼的效能改善”國立台灣科技大
    學電子工程所,2019
    [17] Alexei. Ashikhmin , Gerhard Kramer and Stephan ten Brink, ‘‘Extrinsic
    information transfer functions: model and erasure channel properties,’’ IEEE
    Transactions on Information Theory, vol. 50, issue. 11, pp. 2657–2673,2004
    [18] XU Fu-bing , LEI Jing , LI Er-bao , HE Wen-hui ‘‘Study on EXIT Chart
    Analysis Method of LDPC Codes,’’Radio Communications Technology , vol.
    34, No. 2 , 2008
    [19] Vijini Mallawaarachchi (2017,Jul. 8).Introduction to Genetic Algorithms.
    [ Online]. Available:
    https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3

    QR CODE