簡易檢索 / 詳目顯示

研究生: Alemayehu Dubale Duma
Alemayehu Dubale Duma
論文名稱: Study on High Surface Area and Anti-Corrosive Titanium Oxide Supported Platinum Catalyst towards Oxygen Reduction Reaction for Fuel Cell Applications
Study on High Surface Area and Anti-Corrosive Titanium Oxide Supported Platinum Catalyst towards Oxygen Reduction Reaction for Fuel Cell Applications
指導教授: 蘇威年
Wei-Nien Su
口試委員: 林昇佃
D-Li Shawn
黃炳
Hwang-Bing Joe
鄧熙聖
Hsisheng Teng
王迪彥
diyanwang
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 212
中文關鍵詞: ORRSMSId-band vacanciesintermetallic compoundTi4O7PEMFCs
外文關鍵詞: ORR, SMSI, d-band vacancies, intermetallic compound, Ti4O7, PEMFCs
相關次數: 點閱:302下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如何將催化劑及其載體設計結合,使燃料電池鉑催化劑的電催化活性和耐久性可以獲得改善,並顯著節省成本,可視為作為探索取代碳質載體材料的部分努力。本論文主要是Magnéli氧化物擔載鉑催化劑的設計,合成和表徵工作。這對於延長質子交換膜燃料電池(PEMFC)使用壽命和保證可靠性,以及降低總生命週期的使用成本都具有重要意義。適當調控Magnéli氧化物載體具備相對高的導電性和高表面積,後者的特徵可讓鉑觸媒均勻分散和良好錨定於其載體上。
    論文的第一部分工作強調“開發應用於氧氣還原反應之高比表面積Ti4O7載體材料”。分別使用PEG-400和葡萄糖還原前驅物,即乙醇鈦(IV)和氧化鈦(銳鈦礦)。結果表明:前者可以成功製備Ti4O7純相,而後者仍以金紅石為主。高比表面積達到135-160平方米/克。然而,因無定形碳仍殘留在所製備的Ti4O7中(約6-8重量%),限制了其在氧氣還原反應的實際應用。同時,在經過冷凍乾燥技術和氫還原之前先用食鹽水處理奈米結構二氧化鈦,則所獲得Ti4O7的表面積卻相當低(2 m2/g),仍不合適用於氧氣還原反應。因此,需要一種新的方法來解決此困境,以便在碳熱還原過程中,碳含量的增加和追求高表面積間的困境可以得到調和,使觸媒的催化活性和耐久性不致受到影響。
    第二部分的工作是第一部分的直接延伸,但採取了不同的方法-“用於氧還原反應的抗腐蝕性二氧化鈦負載的有序金屬間鉑催化劑”。主要聚焦在氧化鈦載體上,原位形成結構有序鉑金屬間化合物。透過一個簡單的策略: 使用過硫酸銨(APS)作為氧化劑,經簡單的改質氧化聚合技術,利用聚苯胺在二氧化鈦上均勻沉積Pt。如此,還原TiO2載體和鉑奈米顆粒之間的強金屬載體相互作用(SMSI),方能被適當運用於電催化反應。電化學測量結果顯示,在相同鉑(Pt)載量的情況下,與現今常見的商用Pt/C(JM 20)觸媒相比,負載在氧化物上的鉑催化劑具有更好的催化活性和耐久性。鑒於觸媒表面的活性位址會因為吸附其他分子而導致失活的現象,實驗所觀察到活性和穩定性的提升,可歸因於相鄰鉑原子之間的距離和晶格參數的減小,幫助這些吸附分子容易脫附,釋放更多的活性位址。
    第三部分為“氯化鈉介導有序金屬間鉑催化劑負載在Magnéli相氧化鈦於氧氣還原反應用”。這個部分利用即通過使材料尺寸奈米化,來提高單位體積表面原子數量。該策略不僅增加了表面能,而且降低了相變溫度,並且可在相對較低的溫度下使高溫相穩定。與之前需要高溫和更長反應時間的方法相比,本研究添加氯化鈉,在製備上有序的金屬間化合物Pt3Ti,以及Magnéli相氧化物如Ti3O5,確實可有效將降低處理溫度與縮短時間。但代價是會形成較大的粒子。因此,可透過控制升溫模式來兼顧相轉變與粒子成長。
    在整個過程中,通過變化處理溫度及碳前驅物和銳鈦礦的比例,優化相關參數,同時亦進行金屬合金和Magnélii相氧化物的特徵鑑定。
    電催化下碳擔載的鉑觸媒其電化學活性面積亦快速降低,但結構有序的金屬化合物在嚴苛的酸性環境下,可以表現出更好的耐受性。它們的電化學性能耐久性表現出顯著的改善,因此,極具潛力作為氧氣還原反應的非碳載體觸媒。
    最後,論文的工作提供了製備貴金屬與非貴金屬合金化,以形成有序和耐腐蝕材料的方法,可以擴展到其他應用。

    關鍵字: 氧氣還原反應、觸媒載體強交互作用、d-電子軌域空缺、金屬間化合物、Ti4O7、質子交換膜燃料電池


    As part of tremendous efforts towards exploring stable alternatives for replacing the carbonaceous materials, engineering of both the catalysts and their supports towards more resilient platinum catalysts can potentially improve the activity and durability of the electrocatalysts for fuel cell catalysis and significant cost savings. This dissertation is mainly concerned with design, synthesis and characterization of oxide supported platinum catalyst. This is of great importance for both lengthening the operation life and at the same time ensuring the reliability, as well as reducing the cost in the life cycle of PEMFC. Well regulated Magnéli phase oxide support, provides various advantages in terms of conductivity and surface area. The later in particular opens the avenue for highly dispersed and well-anchored Pt catalyst particles over their respective support.
    The first part of this work emphasized on “High surface area Ti4O7 support material for oxygen reduction reaction. PEG-400 and glucose respectively were used as reducing agents for precursors, namely, Ti (IV) ethoxide and titanium oxide (anatase). The results revealed that pure Ti4O7 phase was successfully fabricated in the former (PEG as reductant) while the later (glucose as reductant) still contains rutile as a dominant phase. High specific surface area was achieved ranging from 135 and 160 m2/g using PEG and Glucose as reductant respectively. Moreover, different ways of removing amorphous carbon residue (6-8 wt. %) in the attained Ti4O7 were also tested using various acid and base treatments. However, carbon residue still cannot be completely removed. Concurrently, sovlothermally prepared anatase precursor was also treated with NaCl before being subjected to freeze drying technology followed by hydrogen reduction at high temperature calcination. However, the acquired Ti4O7 is of limited surface area (2 m2g -1), which also deters its application towards ORR in fuel cell application.
    The second part of this work is the immediate extension of the first but with a different approach for improvement.” It mainly focuses on the synthesis and characterization of structurally ordered intermetallic Pt3Ti, supported on oxygen deficient titanium oxide, which evolved in situ during the high temperature treatment. A simple strategy was developed to deposit Pt on TiO2 uniformly with polyaniline via a simple modified oxidative polymerization technique followed by high temperature calcination before oxide supported ordered intermetallic Pt3Ti was successfully fabricated.
    The electrochemical measurement results indicated that the resulting electrocatalyst displayed highly enhanced specific activity (41.6 µA cm-2) as compared to Pt/C (JM 20) with value of 15.7 µA cm-2. The increase in electrocatalytic activity is ascribable to a change by geometric effects, which resulted from smaller lattice constant and shorter neighboring Pt-Pt bond length as compared to its fcc counterpart (as synthesized and Pt/C).
    The stability test also revealed that the optimal catalyst has shown a gain of 16 % in terms of ECSA; while the commercial based catalyst lost 65 % of its original value, after 2000 potential cycles. This extraordinarily large stability in harsh acidic environment originates from remarkable thermodynamic stability of Pt3Ti due to its high heat of formation. Furthermore, since oxidation is the major deactivation mechanism during long-term operation, inclusion of titanium in the pt lattice raises the oxidation potential for platinum.
    The third part is concerned with Sodium Chloride mediated transformation of titania towards Magnéli phase supported ordered intermetallic Pt3Ti. This section partly makes use of the fact that an increase of the number of surface atoms relative to the bulk would be achieved by minimizing the size of the particles down to the nanoscale. The strategy not only increasse the surface energy but also reduce the phase-transition temperatures and brings about stabilization of high-temperature phases at relatively lower temperatures. The structural analysis results disclosed that apart from ordered intermetallic Pt3Ti phase, the required Magneli phase oxides, such as Ti3O5, were also evolved at a shorter reaction time in the presence of NaCl. However, this costs rapid increase in Pt crystallite size (about 30 nm) even at lower temperature, (750 °C). Hence, an interplay between the merit (faster phase transformation) and demerit (rapid particle growth) have been sought by controlling the heating stage during the course of calcination. By employing two heating stages, the required oxide supported ordered intermetallic alloys, with smaller Pt crystallite size (about 12-18 nm) have been successfully synthesized when annealed at even higher temperature, 850-950 °C.
    Optimizations of temperature were carried out in the entire works. Characterizations of the formation of Magneli phase oxides concurrently with these alloys, was investigated. The electrochemical measurement results demonstrate that the optimal catalyst has shown a specific activity of 38.6 µA cm-2, over twice that of commercial based catalyst. The optimal catalyst also demonstrated remarkable resistance against corrosion with only 5 % loss in terms of ECSA.
    The current work provides feasible approach that can be extended to other technological applications by alloying precious metals with less precious ones to prepare more ordered and corrosion-resistant materials.
    Keywords: ORR, SMSI, d-band vacancies, intermetallic compound, Ti4O7, PEMFCs

    Abstract iii Acknowledgement vi List of Figures xi List of Tables xviii List of Schemes xx Nomenclature xxii Abbreviation xxiii 1. Background 1 1.1. Overview about fuel cells and their challenges 1 1.2. Proton exchange membrane fuel cells (PEMFCs) 8 1.3. Issues in fuel cells 13 1.3.1. Electrocatalyst and catalyst layer degradation 13 1.3.2. Platinum degradation 14 1.3.3. Carbon Support Degradation 17 1.3.4. Membrane degradation 19 1.3.5. Gas diffusion layer degradation 21 1.3.6. Bipolar plate degradation 23 1.3.7. Cost and Reliability 24 1.3.8. Support Effects on Oxygen Reduction Reaction 24 2. Recent Developments in Oxide Support and ordered intermetallic alloys 27 2.1. Oxide Supported Pt electrocatalysts 27 2.2. Recent Development in Ti4O7 33 2.3. Ordered intermetallic alloys 39 2.4. Aims and objectives of the thesis 44 2.5. Thesis Outline 45 3. Experimental section and Characterization 48 3.1. General experimental Section 48 3.1.1. Chemicals and Reagents 48 3.1.2. Preparation of PEG series 49 3.1.3. Preparation of ST-TiO2 50 3.1.4. Preparation of FST Series 51 3.1.5. Preparation of GST Series 52 3.1.6. Preparation of Pt/TiO2 and Pt/ST-TiO2 53 3.1.7. Preparation of PANI-Pt/TiO2 54 3.1.8. Preparation of P-Pt3Ti-TiOx Series 55 3.1.9. Preparation of Pt3Ti-TinOx 56 3.2. Characterization 59 3.2.1. Physical Characterization Techniques 59 3.2.2. Electrode Preparation and Electrochemical Measurements 60 3.2.3. Electrochemical measurements 61 4. Synthesis and Characterization of High Surface Area Ti4O7 Support for Oxygen Reduction Reaction. 63 4.1. Introduction 63 4.2. Results and discussion 66 4.3. Summary 77 5. Polyaniline Assisted Reduction of Titania towards Orderd Intermetallic Pt3Ti for enhanced Oxygen redution reaction and Durability. 79 5.1. Introduction 79 5.2. Results and discussion 83 5.3. Summary 109 6. Sodium Chloride -mediated transformation towards Magneli phase supported Orderd Intermetallic Pt3Ti for Promising ORR Activity and Durability 111 6.1. Introduction 111 6.2. Results and discussion 114 6.3. Summary 136 7. Conclusions and outlooks 138 7.1. Conclusions 138 7.2. Thesis Contribution for Fuel Cell Catalysis 140 7.3. Future Perspectives 141 Appendix A - Approach-I 144 Appendix B - Approach-II 148 Appendix C - Approach-III 153 References 157

    [1] F. Shariatzadeh, P. Mandal, A.K. Srivastava, Demand response for sustainable energy systems: A review, application and implementation strategy, Renewable and Sustainable Energy Reviews 45 (2015) 343-350.
    [2] A.M. Omer, Energy, environment and sustainable development, Renewable and Sustainable Energy Reviews 12(9) (2008) 2265-2300.
    [3] X. Li, Green Energy for Sustainability and Energy Security, in: X. Li (Ed.), Green Energy: Basic Concepts and Fundamentals, Springer London, London, 2011, pp. 1-16.
    [4] R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K.L. More, K. Stroh, T. Zawodzinski, J. Boncella, J. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-i. Kimijima, N. Iwashita, Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation, Chem. Rev. (2007) Medium: X; Size: 3904-3951.
    [5] S. Sorrell, Reducing energy demand: A review of issues, challenges and approaches, Renewable and Sustainable Energy Reviews 47 (2015) 74-82.
    [6] F. Monforti, E. Lugato, V. Motola, K. Bodis, N. Scarlat, J.F. Dallemand, Optimal energy use of agricultural crop residues preserving soil organic carbon stocks in Europe, Renewable and Sustainable Energy Reviews 44 (2015) 519-529.
    [7] A.B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renewable and Sustainable Energy Reviews 6(5) (2002) 433-455.
    [8] Y.-J. Wang, D.P. Wilkinson, J. Zhang, Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts, Chem. Rev. 111(12) (2011) 7625-7651.
    [9] X.-C. Liu, G.-C. Wang, R.-P. Liang, L. Shi, J.-D. Qiu, Environment-friendly facile synthesis of Pt nanoparticles supported on polydopamine modified carbon materials, J. Mater. Chem. A 1(12) (2013) 3945.
    [10] J.-H. Wee, Applications of proton exchange membrane fuel cell systems, Renewable and Sustainable Energy Reviews 11(8) (2007) 1720-1738.
    [11] R.F. Service, Bringing Fuel Cells Down to Earth, Science 285(5428) (1999) 682-685.
    [12] A.Z. Weber, J. Newman, Modeling Transport in Polymer-Electrolyte Fuel Cells, Chem. Rev. 104(10) (2004) 4679-4726.
    [13] T.V. Nguyen, R.E. White, A Water and Heat Management Model for Proton‐Exchange‐Membrane Fuel Cells, J. Electrochem. Soc. 140(8) (1993) 2178-2186.
    [14] E.I. Ortiz-Rivera, A.L. Reyes-Hernandez, R.A. Febo, Understanding the history of fuel cells, 2007 IEEE Conference on the History of Electric Power, 2007, pp. 117-122.
    [15] F. Barbir, S. Yazici, Status and development of PEM fuel cell technology, International Journal of Energy Research 32(5) (2008) 369-378.
    [16] B. Smitha, S. Sridhar, A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications—a review, Journal of Membrane Science 259(1-2) (2005) 10-26.
    [17] C. Hartnig, I. Manke, R. Kuhn, N. Kardjilov, J. Banhart, W. Lehnert, Cross-sectional insight in the water evolution and transport in polymer electrolyte fuel cells, Appl. Phys. Lett. 92(13) (2008) 134106.
    [18] S.M. Haile, Fuel cell materials and components☆☆☆The Golden Jubilee Issue—Selected topics in Materials Science and Engineering: Past, Present and Future, edited by S. Suresh, Acta Mater. 51(19) (2003) 5981-6000.
    [19] C. Pang, Y.C. Tai, J.W. Burdick, R.A. Andersen, Electrolysis-based diaphragm actuators, Nanotechnology 17(4) (2006) S64-S68.
    [20] S. Litster, G. McLean, PEM fuel cell electrodes, J. Power Sources 130(1-2) (2004) 61-76.
    [21] A.A. Gewirth, M.S. Thorum, Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges, Inorg. Chem. 49(8) (2010) 3557-3566.
    [22] F. de Bruijn, The current status of fuel cell technology for mobile and stationary applications, Green Chemistry 7(3) (2005) 132.
    [23] Z. Shao, S.M. Haile, J. Ahn, P.D. Ronney, Z. Zhan, S.A. Barnett, A thermally self-sustained micro solid-oxide fuel-cell stack with high power density, Nature 435(7043) (2005) 795-8.
    [24] T.M. Gur, Critical review of carbon conversion in "carbon fuel cells", Chem. Rev. 113(8) (2013) 6179-206.
    [25] B. Lindström, J.A.J. Karlsson, P. Ekdunge, L. De Verdier, B. Häggendal, J. Dawody, M. Nilsson, L.J. Pettersson, Diesel fuel reformer for automotive fuel cell applications, Int. J. Hydrogen Energy 34(8) (2009) 3367-3381.
    [26] A. Rabis, P. Rodriguez, T.J. Schmidt, Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges, ACS Catalysis 2(5) (2012) 864-890.
    [27] P. Jannasch, Recent developments in high-temperature proton conducting polymer electrolyte membranes, Current Opinion in Colloid & Interface Science 8(1) (2003) 96-102.
    [28] S. Um, C.Y. Wang, K.S. Chen, Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells, J. Electrochem. Soc. 147(12) (2000) 4485-4493.
    [29] R.M. Rao, R. Rengaswamy, A dynamic spherical agglomerate model for proton exchange membrane fuel cells (PEMFC), Computer Aided Chemical Engineering 20 (2005) 541-546.
    [30] B. Wang, Recent development of non-platinum catalysts for oxygen reduction reaction, J. Power Sources 152 (2005) 1-15.
    [31] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied Energy 88(4) (2011) 981-1007.
    [32] M. Rahimnejad, G. Bakeri, G. Najafpour, M. Ghasemi, S.-E. Oh, A review on the effect of proton exchange membranes in microbial fuel cells, Biofuel Research Journal 1(1) (2014) 7-15.
    [33] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental 56(1) (2005) 9-35.
    [34] S.-L. Chen, A.B. Bocarsly, J. Benziger, Nafion-layered sulfonated polysulfone fuel cell membranes, J. Power Sources 152 (2005) 27-33.
    [35] S. Motupally, A.J. Becker, J.W. Weidner, Diffusion of Water in Nafion 115 Membranes, J. Electrochem. Soc. 147(9) (2000) 3171-3177.
    [36] V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources 114(1) (2003) 32-53.
    [37] K.E. Swider-Lyons, S.A. Campbell, Physical Chemistry Research Toward Proton Exchange Membrane Fuel Cell Advancement, J Phys Chem Lett 4(3) (2013) 393-401.
    [38] A. Khan, C.A. Gunawan, C. Zhao, Oxygen Reduction Reaction in Ionic Liquids: Fundamentals and Applications in Energy and Sensors, ACS Sustainable Chemistry & Engineering 5(5) (2017) 3698-3715.
    [39] S. Walch, A. Dhanda, M. Aryanpour, H. Pitsch, Mechanism of Molecular Oxygen Reduction at the Cathode of a PEM Fuel Cell: Non-Electrochemical Reactions on Catalytic Pt Particles, The Journal of Physical Chemistry C 112(22) (2008) 8464-8475.
    [40] M. Açıkyıldız, A. Gürses, M.E. Korucu, K.b. Güneş, Electrocatalysis and the Production of Nanoparticles, in: M. Aliofkhazraei (Ed.), Modern Electrochemical Methods in Nano, Surface and Corrosion Science, InTech, Rijeka, 2014, p. Ch. 07.
    [41] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, The Journal of Physical Chemistry B 108(46) (2004) 17886-17892.
    [42] O.T. Holton, J.W. Stevenson, The Role of Platinum in Proton Exchange Membrane Fuel Cells, Platinum Met. Rev. 57(4) (2013) 259-271.
    [43] V. Viswanathan, H.A. Hansen, J. Rossmeisl, J.K. Norskov, Unifying the 2e(-) and 4e(-) Reduction of Oxygen on Metal Surfaces, J Phys Chem Lett 3(20) (2012) 2948-51.
    [44] J. Wu, H. Yang, Platinum-Based Oxygen Reduction Electrocatalysts, Acc. Chem. Res. 46(8) (2013) 1848-1857.
    [45] J. Zhang, L. Dai, Heteroatom-Doped Graphitic Carbon Catalysts for Efficient Electrocatalysis of Oxygen Reduction Reaction, ACS Catalysis 5(12) (2015) 7244-7253.
    [46] S. Mezzavilla, S. Cherevko, C. Baldizzone, E. Pizzutilo, G. Polymeros, K.J.J. Mayrhofer, Experimental Methodologies to Understand Degradation of Nanostructured Electrocatalysts for PEM Fuel Cells: Advances and Opportunities, ChemElectroChem 3(10) (2016) 1524-1536.
    [47] S. Zhang, X.-Z. Yuan, J.N.C. Hin, H. Wang, K.A. Friedrich, M. Schulze, A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells, J. Power Sources 194(2) (2009) 588-600.
    [48] M. Srinivasarao, D. Bhattacharyya, R. Rengaswamy, S. Narasimhan, Performance analysis of a PEM fuel cell cathode with multiple catalyst layers, Int. J. Hydrogen Energy 35(12) (2010) 6356-6365.
    [49] T. Ishimoto, M. Koyama, A Review of Molecular-Level Mechanism of Membrane Degradation in the Polymer Electrolyte Fuel Cell, Membranes 2(3) (2012) 395.
    [50] M.C. Smith, J.A. Gilbert, J.R. Mawdsley, S. Seifert, D.J. Myers, In Situ Small-Angle X-ray Scattering Observation of Pt Catalyst Particle Growth During Potential Cycling, J. Am. Chem. Soc. 130(26) (2008) 8112-8113.
    [51] K. Kinoshita, J.T. Lundquist, P. Stonehart, Potential cycling effects on platinum electrocatalyst surfaces, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 48(2) (1973) 157-166.
    [52] M.A. Asoro, D. Kovar, Y. Shao-Horn, L.F. Allard, P.J. Ferreira, Coalescence and sintering of Pt nanoparticles: in situ observation by aberration-corrected HAADF STEM, Nanotechnology 21(2) (2010) 025701.
    [53] J.A.S. Bett, K. Kinoshita, P. Stonehart, Crystallite growth of platinum dispersed on graphitized carbon black, J. Catal. 41(1) (1976) 124-133.
    [54] C. Galeano, J.C. Meier, V. Peinecke, H. Bongard, I. Katsounaros, A.A. Topalov, A. Lu, K.J. Mayrhofer, F. Schuth, Toward highly stable electrocatalysts via nanoparticle pore confinement, J. Am. Chem. Soc. 134(50) (2012) 20457-65.
    [55] M. Gatalo, P. Jovanovič, G. Polymeros, J.-P. Grote, A. Pavlišič, F. Ruiz- Zepeda, V.S. Šelih, M. Šala, S. Hočevar, M. Bele, K.J.J. Mayrhofer, N. Hodnik, M. Gaberšček, Positive Effect of Surface Doping with Au on the Stability of Pt-Based Electrocatalysts, ACS Catalysis 6(3) (2016) 1630-1634.
    [56] J. Monzó, D.F. van der Vliet, A. Yanson, P. Rodriguez, Elucidating the degradation mechanism of the cathode catalyst of PEFCs by a combination of electrochemical methods and X-ray fluorescence spectroscopy, Phys. Chem. Chem. Phys. 18(32) (2016) 22407-22415.
    [57] L. Tang, B. Han, K. Persson, C. Friesen, T. He, K. Sieradzki, G. Ceder, Electrochemical Stability of Nanometer-Scale Pt Particles in Acidic Environments, J. Am. Chem. Soc. 132(2) (2010) 596-600.
    [58] J.C. Meier, C. Galeano, I. Katsounaros, J. Witte, H.J. Bongard, A.A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schüth, K.J.J. Mayrhofer, Design criteria for stable Pt/C fuel cell catalysts, Beilstein Journal of Nanotechnology 5 (2014) 44-67.
    [59] T. Engl, L. Gubler, T.J. Schmidt, Think Different! Carbon Corrosion Mitigation Strategy in High Temperature PEFC: A Rapid Aging Study, J. Electrochem. Soc. 162(3) (2015) F291-F297.
    [60] L. Castanheira, L. Dubau, M. Mermoux, G. Berthomé, N. Caqué, E. Rossinot, M. Chatenet, F. Maillard, Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: From Model Experiments to Real-Life Operation in Membrane Electrode Assemblies, ACS Catalysis 4(7) (2014) 2258-2267.
    [61] B. Chen, J. Wang, T. Yang, Y. Cai, C. Zhang, S.H. Chan, Y. Yu, Z. Tu, Carbon corrosion and performance degradation mechanism in a proton exchange membrane fuel cell with dead-ended anode and cathode, Energy 106 (2016) 54-62.
    [62] J.C. Meier, C. Galeano, I. Katsounaros, A.A. Topalov, A. Kostka, F. Schüth, K.J.J. Mayrhofer, Degradation Mechanisms of Pt/C Fuel Cell Catalysts under Simulated Start–Stop Conditions, ACS Catalysis 2(5) (2012) 832-843.
    [63] J. Kim, J. Lee, Y. Tak, Relationship between carbon corrosion and positive electrode potential in a proton-exchange membrane fuel cell during start/stop operation, J. Power Sources 192(2) (2009) 674-678.
    [64] Y.J. Wang, N. Zhao, B. Fang, H. Li, X.T. Bi, H. Wang, Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity, Chem. Rev. 115(9) (2015) 3433-67.
    [65] M.S. Kim, D. Bhattacharjya, B. Fang, D.S. Yang, T.S. Bae, J.S. Yu, Morphology-dependent Li storage performance of ordered mesoporous carbon as anode material, Langmuir 29(22) (2013) 6754-61.
    [66] T. Yang, M. Du, H. Zhu, M. Zhang, M. Zou, Immobilization of Pt Nanoparticles in Carbon Nanofibers: Bifunctional Catalyst for Hydrogen Evolution and Electrochemical Sensor, Electrochim. Acta 167 (2015) 48-54.
    [67] S.-Y. Huang, P. Ganesan, S. Park, B.N. Popov, Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications, J. Am. Chem. Soc. 131(39) (2009) 13898-13899.
    [68] B. Avasarala, R. Moore, P. Haldar, Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions, Electrochim. Acta 55(16) (2010) 4765-4771.
    [69] S. Park, Y. Shao, H. Wan, V.V. Viswanathan, S.A. Towne, P.C. Rieke, J. Liu, Y. Wang, Degradation of the Ionic Pathway in a PEM Fuel Cell Cathode, The Journal of Physical Chemistry C 115(45) (2011) 22633-22639.
    [70] F. Forouzandeh, X. Li, D.W. Banham, F. Feng, S. Ye, V. Birss, Evaluation of the Corrosion Resistance of Carbons for Use as PEM Fuel Cell Cathode Supports, J. Electrochem. Soc. 162(12) (2015) F1333-F1341.
    [71] C. Wieser, Novel Polymer Electrolyte Membranes for Automotive Applications – Requirements and Benefits, Fuel Cells 4(4) (2004) 245-250.
    [72] K.H. Wong, E. Kjeang, Macroscopic In-Situ Modeling of Chemical Membrane Degradation in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. 161(9) (2014) F823-F832.
    [73] M. Ingratta, E.P. Jutemar, P. Jannasch, Synthesis, Nanostructures and Properties of Sulfonated Poly(phenylene oxide) Bearing Polyfluorostyrene Side Chains as Proton Conducting Membranes, Macromolecules 44(7) (2011) 2074-2083.
    [74] S. Helmly, R. Hiesgen, T. Morawietz, X.-Z. Yuan, H. Wang, K. Andreas Friedrich, Microscopic Investigation of Platinum Deposition in PEMFC Cross-Sections Using AFM and SEM, J. Electrochem. Soc. 160(6) (2013) F687-F697.
    [75] A.Z. Weber, R.L. Borup, R.M. Darling, P.K. Das, T.J. Dursch, W. Gu, D. Harvey, A. Kusoglu, S. Litster, M.M. Mench, R. Mukundan, J.P. Owejan, J.G. Pharoah, M. Secanell, I.V. Zenyuk, A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells, J. Electrochem. Soc. 161(12) (2014) F1254-F1299.
    [76] H. Liu, F.D. Coms, J. Zhang, H.A. Gasteiger, A.B. LaConti, Chemical Degradation: Correlations Between Electrolyzer and Fuel Cell Findings, in: F.N. Büchi, M. Inaba, T.J. Schmidt (Eds.), Polymer Electrolyte Fuel Cell Durability, Springer New York, New York, NY, 2009, pp. 71-118.
    [77] S.v. Venkatesan, C. Lim, S. Holdcroft, E. Kjeang, Progression in the Morphology of Fuel Cell Membranes upon Conjoint Chemical and Mechanical Degradation, J. Electrochem. Soc. 163(7) (2016) F637-F643.
    [78] A.P. Young, J. Stumper, S. Knights, E. Gyenge, Ionomer Degradation in Polymer Electrolyte Membrane Fuel Cells, J. Electrochem. Soc. 157(3) (2010) B425-B436.
    [79] Q. Li, R. He, J.O. Jensen, N.J. Bjerrum, Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C, Chem. Mater. 15(26) (2003) 4896-4915.
    [80] M. Saito, K. Hayamizu, T. Okada, Temperature Dependence of Ion and Water Transport in Perfluorinated Ionomer Membranes for Fuel Cells, The Journal of Physical Chemistry B 109(8) (2005) 3112-3119.
    [81] P. Rama, R. Chen, J. Andrews, A review of performance degradation and failure modes for hydrogen-fuelled polymer electrolyte fuel cells, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 222(5) (2008) 421-441.
    [82] F.D. Coms, The Chemistry of Fuel Cell Membrane Chemical Degradation, ECS Transactions 16(2) (2008) 235-255.
    [83] L. Dubau, L. Castanheira, F. Maillard, M. Chatenet, O. Lottin, G. Maranzana, J. Dillet, A. Lamibrac, J.-C. Perrin, E. Moukheiber, A. ElKaddouri, G. De Moor, C. Bas, L. Flandin, N. Caqué, A review of PEM fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies, Wiley Interdisciplinary Reviews: Energy and Environment 3(6) (2014) 540-560.
    [84] A. Strong, B. Britton, D. Edwards, T.J. Peckham, H.-F. Lee, W.Y. Huang, S. Holdcroft, Alcohol-Soluble, Sulfonated Poly(arylene ether)s: Investigation of Hydrocarbon Ionomers for Proton Exchange Membrane Fuel Cell Catalyst Layers, J. Electrochem. Soc. 162(6) (2015) F513-F518.
    [85] M.A. Quiroga, K. Malek, A.A. Franco, A Multiparadigm Modeling Investigation of Membrane Chemical Degradation in PEM Fuel Cells, J. Electrochem. Soc. 163(2) (2016) F59-F70.
    [86] J. Healy, C. Hayden, T. Xie, K. Olson, R. Waldo, M. Brundage, H. Gasteiger, J. Abbott, Aspects of the Chemical Degradation of PFSA Ionomers used in PEM Fuel Cells, Fuel Cells 5(2) (2005) 302-308.
    [87] G. Lin, W. He, T. Van Nguyen, Erratum: Modeling Liquid Water Effects in the Gas Diffusion and Catalyst Layers of the Cathode of a PEM Fuel Cell [ J. Electrochem. Soc. , 151 , A1999 (2004) ], J. Electrochem. Soc. 153(7) (2006) L12-L13.
    [88] J.S. Yi, T.V. Nguyen, Erratum: “Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributor” [ J. Electrochem. Soc. (146, 38)], J. Electrochem. Soc. 146(5) (1999) 2000.
    [89] H. Xu, Y. Song, H.R. Kunz, J.M. Fenton, Erratum: Effect of Elevated Temperature and Reduced Relative Humidity on ORR Kinetics for PEM Fuel Cells [ J. Electrochem. Soc. , 152 , A1828 (2005) ], J. Electrochem. Soc. 153(1) (2006) L1.
    [90] D. Natarajan, T. Van Nguyen, Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell, J. Power Sources 115(1) (2003) 66-80.
    [91] M.S. Wilson, S. Gottesfeld, High Performance Catalyzed Membranes of Ultra‐low Pt Loadings for Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. 139(2) (1992) L28-L30.
    [92] X. Ren, M.S. Wilson, S. Gottesfeld, High Performance Direct Methanol Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. 143(1) (1996) L12-L15.
    [93] E. Guilminot, A. Corcella, M. Chatenet, F. Maillard, F. Charlot, G. Berthomé, C. Iojoiu, J.-Y. Sanchez, E. Rossinot, E. Claude, Membrane and Active Layer Degradation upon PEMFC Steady-State Operation: I. Platinum Dissolution and Redistribution within the MEA, J. Electrochem. Soc. 154(11) (2007) B1106-B1114.
    [94] J. St-Pierre, B. Wetton, Y. Zhai, J. Ge, Liquid Water Scavenging of PEMFC Contaminants, J. Electrochem. Soc. 161(8) (2014) E3357-E3364.
    [95] M. Schulze, N. Wagner, T. Kaz, K.A. Friedrich, Combined electrochemical and surface analysis investigation of degradation processes in polymer electrolyte membrane fuel cells, Electrochim. Acta 52(6) (2007) 2328-2336.
    [96] M.P. Rodgers, L.J. Bonville, H.R. Kunz, D.K. Slattery, J.M. Fenton, Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime, Chem. Rev. 112(11) (2012) 6075-103.
    [97] B.K. Kakati, D. Deka, Effect of Resin Matrix Precursor on the Properties of Graphite Composite Bipolar Plate for PEM Fuel Cell, Energy & Fuels 21(3) (2007) 1681-1687.
    [98] S. Karimi, N. Fraser, B. Roberts, F.R. Foulkes, A Review of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells: Materials and Fabrication Methods, Advances in Materials Science and Engineering 2012 (2012) 1-22.
    [99] A.M. Herring, T.A. Zawodzinski, S.J. Hamrock, Fuel Cell Chemistry and Operation, American Chemical Society2010.
    [100] J. Wu, X.Z. Yuan, J.J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida, A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies, Journal of Power Sources 184(1) (2008) 104-119.
    [101] A.S. Aricò, A.K. Shukla, H. Kim, S. Park, M. Min, V. Antonucci, An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen, Applied Surface Science 172(1) (2001) 33-40.
    [102] A.K. Shukla, M. Neergat, P. Bera, V. Jayaram, M.S. Hegde, An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells, Journal of Electroanalytical Chemistry 504(1) (2001) 111-119.
    [103] M. Teliska, W.E. O'Grady, D.E. Ramaker, Determination of O and OH Adsorption Sites and Coverage in Situ on Pt Electrodes from Pt L23 X-ray Absorption Spectroscopy, The Journal of Physical Chemistry B 109(16) (2005) 8076-8084.
    [104] B. Coq, F. Figueras, Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance, Journal of Molecular Catalysis A: Chemical 173(1) (2001) 117-134.
    [105] S. Sugawara, K. Tsujita, S. Mitsushima, K. Shinohara, K.-i. Ota, Simultaneous Electrochemical Measurement of Oxygen Reduction and Pt Oxide Formation/Reduction on Pt Nanoparticle Surface, Electrocatalysis 2(1) (2011) 60-68.
    [106] T.-T. Nguyen, V.T.T. Ho, C.-J. Pan, J.-Y. Liu, H.-L. Chou, J. Rick, W.-N. Su, B.-J. Hwang, Synthesis of Ti0.7Mo0.3O2 supported-Pt nanodendrites and their catalytic activity and stability for oxygen reduction reaction, Applied Catalysis B: Environmental 154-155 (2014) 183-189.
    [107] C.-C. Shih, J.-R. Chang, Pt/C stabilization for catalytic wet-air oxidation: Use of grafted TiO2, J. Catal. 240(2) (2006) 137-150.
    [108] S.Y. Huang, P. Ganesan, B.N. Popov, Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell, Applied Catalysis B: Environmental 102(1-2) (2011) 71-77.
    [109] Z. Liu, J. Zhang, B. Han, J. Du, T. Mu, Y. Wang, Z. Sun, Solvothermal synthesis of mesoporous Eu2O3–TiO2 composites, Microporous Mesoporous Mater. 81(1-3) (2005) 169-174.
    [110] D. Morris, Y. Dou, J. Rebane, C.E.J. Mitchell, R.G. Egdell, D.S.L. Law, A. Vittadini, M. Casarin, Photoemission and STM study of the electronic structure of Nb-doped ${\mathrm{TiO}}_{2}$, Physical Review B 61(20) (2000) 13445-13457.
    [111] J. Nowotny, L. Sheppard, Solar-hydrogen, Int. J. Hydrogen Energy 32(14) (2007) 2607-2608.
    [112] J. Arbiol, J. Cerdà, G. Dezanneau, A. Cirera, F. Peiró, A. Cornet, J.R. Morante, Effects of Nb doping on the TiO2 anatase-to-rutile phase transition, J. Appl. Phys. 92(2) (2002) 853-861.
    [113] A. Bernasik, M. Radecka, M. Rekas, M. Sloma, Electrical properties of Cr- and Nb-doped TiO2 thin films, Appl. Surf. Sci. 65-66(Supplement C) (1993) 240-245.
    [114] V.T. Thanh Ho, K.C. Pillai, H.L. Chou, C.J. Pan, J. Rick, W.N. Su, B.J. Hwang, J.F. Lee, H.S. Sheu, W.T. Chuang, Robust non-carbon Ti 0.7Ru 0.3O 2 support with co-catalytic functionality for Pt: Enhances catalytic activity and durability for fuel cells, Energy and Environmental Science 4(10) (2011) 4194-4200.
    [115] V.T.T. Ho, C.J. Pan, J. Rick, W.N. Su, B.J. Hwang, Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: High-performance catalyst for oxygen reduction reaction, Journal of the American Chemical Society 133(30) (2011) 11716-11724.
    [116] X.X. Wang, Z.H. Tan, M. Zeng, J.N. Wang, Carbon nanocages: a new support material for Pt catalyst with remarkably high durability, Sci Rep 4 (2014) 4437.
    [117] V.T. Ho, C.J. Pan, J. Rick, W.N. Su, B.J. Hwang, Nanostructured Ti(0.7)Mo(0.3)O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction, J. Am. Chem. Soc. 133(30) (2011) 11716-24.
    [118] T. Ioroi, H. Senoh, S.-i. Yamazaki, Z. Siroma, N. Fujiwara, K. Yasuda, Stability of Corrosion-Resistant Magnéli-Phase Ti[sub 4]O[sub 7]-Supported PEMFC Catalysts at High Potentials, J. Electrochem. Soc. 155(4) (2008) B321.
    [119] D.Y. Chung, S.W. Jun, G. Yoon, S.G. Kwon, D.Y. Shin, P. Seo, J.M. Yoo, H. Shin, Y.-H. Chung, H. Kim, B.S. Mun, K.-S. Lee, N.-S. Lee, S.J. Yoo, D.-H. Lim, K. Kang, Y.-E. Sung, T. Hyeon, Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction, J. Am. Chem. Soc. 137(49) (2015) 15478-15485.
    [120] R. Zhu, Y. Liu, J. Ye, X. Zhang, Magnéli phase Ti4O7 powder from carbothermal reduction method: formation, conductivity and optical properties, Journal of Materials Science: Materials in Electronics 24(12) (2013) 4853-4856.
    [121] K. Senevirathne, R. Hui, S. Campbell, S. Ye, J. Zhang, Electrocatalytic activity and durability of Pt/NbO2 and Pt/Ti4O7 nanofibers for PEM fuel cell oxygen reduction reaction, Electrochim. Acta 59 (2012) 538-547.
    [122] C. Yao, F. Li, X. Li, D. Xia, Fiber-like nanostructured Ti4O7 used as durable fuel cell catalyst support in oxygen reduction catalysis, J. Mater. Chem. 22(32) (2012) 16560.
    [123] Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries, Nature Communications 5 (2014) 4759.
    [124] D. Kundu, R. Black, E.J. Berg, L.F. Nazar, A highly active nanostructured metallic oxide cathode for aprotic Li-O2 batteries, Energy Environ. Sci. 8(4) (2015) 1292-1298.
    [125] X. Li, A.L. Zhu, W. Qu, H. Wang, R. Hui, L. Zhang, J. Zhang, Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries, Electrochim. Acta 55(20) (2010) 5891-5898.
    [126] D. Wang, H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. DiSalvo, H.D. Abruna, Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts, Nature materials 12(1) (2013) 81-7.
    [127] L. Shao, G. Tobias, C.G. Salzmann, B. Ballesteros, S.Y. Hong, A. Crossley, B.G. Davis, M.L.H. Green, Removal of amorphous carbon for the efficient sidewall functionalisation of single-walled carbon nanotubes, Chem. Commun. (47) (2007) 5090-5092.
    [128] Y. Shao, S. Zhang, R. Kou, X. Wang, C. Wang, S. Dai, V. Viswanathan, J. Liu, Y. Wang, Y. Lin, Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction, J. Power Sources 195(7) (2010) 1805-1811.
    [129] V.T.T. Ho, C.-J. Pan, J. Rick, W.-N. Su, B.-J. Hwang, Nanostructured Ti0.7Mo0.3O2Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction, J. Am. Chem. Soc. 133(30) (2011) 11716-11724.
    [130] J. Qin, C. He, N. Zhao, Z. Wang, C. Shi, E.-Z. Liu, J. Li, Graphene Networks Anchored with Sn@Graphene as Lithium Ion Battery Anode, ACS Nano 8(2) (2014) 1728-1738.
    [131] F. Dong, S. Guo, H. Wang, X. Li, Z. Wu, Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2Nanomaterials Prepared by a Green Synthetic Approach, The Journal of Physical Chemistry C 115(27) (2011) 13285-13292.
    [132] L. Guo, W.-J. Jiang, Y. Zhang, J.-S. Hu, Z.-D. Wei, L.-J. Wan, Embedding Pt Nanocrystals in N-Doped Porous Carbon/Carbon Nanotubes toward Highly Stable Electrocatalysts for the Oxygen Reduction Reaction, ACS Catalysis 5(5) (2015) 2903-2909.
    [133] N.G. Akalework, C.-J. Pan, W.-N. Su, J. Rick, M.-C. Tsai, J.-F. Lee, J.-M. Lin, L.-D. Tsai, B.-J. Hwang, Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs, J. Mater. Chem. 22(39) (2012) 20977.
    [134] Q. Jia, K. Caldwell, K. Strickland, J.M. Ziegelbauer, Z. Liu, Z. Yu, D.E. Ramaker, S. Mukerjee, Improved Oxygen Reduction Activity and Durability of Dealloyed PtCoxCatalysts for Proton Exchange Membrane Fuel Cells: Strain, Ligand, and Particle Size Effects, ACS Catalysis 5(1) (2015) 176-186.
    [135] Y.J. Huang, Y.S. Ye, Y.C. Yen, L.D. Tsai, B.J. Hwang, F.C. Chang, Synthesis and characterization of new sulfonated polytriazole proton exchange membrane by click reaction for direct methanol fuel cells (DMFCs), Int. J. Hydrogen Energy 36(23) (2011) 15333-15343.
    [136] J. Joseph, C.-Y. Tseng, B.-J. Hwang, Phosphonic acid-grafted mesostructured silica/Nafion hybrid membranes for fuel cell applications, J. Power Sources 196(18) (2011) 7363-7371.
    [137] A. Kumar, V. Ramani, Strong Metal–Support Interactions Enhance the Activity and Durability of Platinum Supported on Tantalum-Modified Titanium Dioxide Electrocatalysts, ACS Catalysis 4(5) (2014) 1516-1525.
    [138] H. Yang, Platinum-Based Electrocatalysts with Core-Shell Nanostructures, Angew. Chem. Int. Ed. 50(12) (2011) 2674-2676.
    [139] X. Li, L. An, X. Chen, N. Zhang, D. Xia, W. Huang, W. Chu, Z. Wu, Durability Enhancement of Intermetallics Electrocatalysts via N-anchor Effect for Fuel Cells, Scientific Reports 3 (2013).
    [140] J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Nørskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts, Nature Chemistry 1(7) (2009) 552-556.
    [141] J. Sunarso, A.A.J. Torriero, W. Zhou, P.C. Howlett, M. Forsyth, Oxygen Reduction Reaction Activity of La-Based Perovskite Oxides in Alkaline Medium: A Thin-Film Rotating Ring-Disk Electrode Study, J. Phys. Chem. C 116(9) (2012) 5827-5834.
    [142] A. Holewinski, J.-C. Idrobo, S. Linic, High-performance Ag–Co alloy catalysts for electrochemical oxygen reduction, Nature Chemistry 6(9) (2014) 828-834.
    [143] Z. Zhang, J. Liu, J. Gu, L. Su, L. Cheng, An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells, Energy Environ. Sci. 7(8) (2014) 2535.
    [144] S.H. Joo, C. Pak, D.J. You, S.-A. Lee, H.I. Lee, J.M. Kim, H. Chang, D. Seung, Ordered mesoporous carbons (OMC) as supports of electrocatalysts for direct methanol fuel cells (DMFC): Effect of carbon precursors of OMC on DMFC performances, Electrochim. Acta 52(4) (2006) 1618-1626.
    [145] H. Lv, N. Cheng, T. Peng, M. Pan, S. Mu, High stability platinum electrocatalysts with zirconia–carbon hybrid supports, J. Mater. Chem. 22(3) (2012) 1135-1141.
    [146] S. Pylypenko, A. Queen, T.S. Olson, A. Dameron, K. O’Neill, K.C. Neyerlin, B. Pivovar, H.N. Dinh, D.S. Ginley, T. Gennett, R. O’Hayre, Tuning Carbon-Based Fuel Cell Catalyst Support Structures via Nitrogen Functionalization. II. Investigation of Durability of Pt–Ru Nanoparticles Supported on Highly Oriented Pyrolytic Graphite Model Catalyst Supports As a Function of Nitrogen Implantation Dose, J. Phys. Chem. C 115(28) (2011) 13676-13684.
    [147] H. Schulenburg, B. Schwanitz, N. Linse, G.n.G. Scherer, A. Wokaun, J. Krbanjevic, R. Grothausmann, I. Manke, 3D Imaging of Catalyst Support Corrosion in Polymer Electrolyte Fuel Cells, J. Phys. Chem. C 115(29) (2011) 14236-14243.
    [148] Y. Nie, S. Chen, W. Ding, X. Xie, Y. Zhang, Z. Wei, Pt/C trapped in activated graphitic carbon layers as a highly durable electrocatalyst for the oxygen reduction reaction, Chem. Commun. 50(97) (2014) 15431-15434.
    [149] L. Xiong, L. Zheng, C. Liu, L. Jin, Q. Liu, J. Xu, Tungsten Carbide Microspheres with High Surface Area as Platinum Catalyst Supports for Enhanced Electrocatalytic Activity, J. Electrochem. Soc. 162(4) (2015) F468-F473.
    [150] A. Zhao, J. Masa, W. Xia, Oxygen-deficient titania as alternative support for Pt catalysts for the oxygen reduction reaction, Journal of Energy Chemistry 23(6) (2014) 701-707.
    [151] C. Gebauer, Z. Jusys, M. Wassner, N. Hüsing, R.J. Behm, Membrane Fuel Cell Cathode Catalysts Based on Titanium Oxide Supported Platinum Nanoparticles, ChemPhysChem 15(10) (2014) 2094-2107.
    [152] F. Shi, L.R. Baker, A. Hervier, G.A. Somorjai, K. Komvopoulos, Tuning the Electronic Structure of Titanium Oxide Support to Enhance the Electrochemical Activity of Platinum Nanoparticles, Nano Lett. 13(9) (2013) 4469-4474.
    [153] G. Chen, S.R. Bare, T.E. Mallouk, Development of Supported Bifunctional Electrocatalysts for Unitized Regenerative Fuel Cells, J. Electrochem. Soc. 149(8) (2002) A1092.
    [154] S. Sun, G. Zhang, X. Sun, M. Cai, M. Ruthkosky, Highly Stable and Active Pt/Nb-TiO2Carbon-Free Electrocatalyst for Proton Exchange Membrane Fuel Cells, Journal of Nanotechnology 2012 (2012) 1-8.
    [155] P.K. Shen, C. He, S. Chang, X. Huang, Z. Tian, Magnéli phase Ti8O15nanowires as conductive carbon-free energy materials to enhance the electrochemical activity of palladium nanoparticles for direct ethanol oxidation, J. Mater. Chem. A 3(27) (2015) 14416-14423.
    [156] L. Liborio, G. Mallia, N. Harrison, Electronic structure of theTi4O7Magnéli phase, Physical Review B 79(24) (2009).
    [157] A.D. Duma, Y.-C. Wu, W.-N. Su, C.-J. Pan, M.-C. Tsai, H.-M. Chen, J.-F. Lee, H.-S. Sheu, V.T.T. Ho, B.-J. Hwang, In-situ Confined Synthesis of Ti4O7 Supported Platinum Electrocatalysts with Enhanced Activity and Stability for Oxygen Reduction Reaction, ChemCatChem. Accepted Author Manuscript. doi:10.1002/cctc.201701503

    [158] Rebecca E. Cochran, Jing-Jong Shyue, N.P. Padture, Template-based, near-ambient synthesis of crystalline metal-oxide nanotubes, nanowires and coaxial nanotubes, Acta Materialia 55 (2007) 3007-3014.
    [159] Xiaoyue Wang, Hai Wang, Yu Zhou, Yong Liu, Baojun Li, Xiang Zhou, H. Shen, Confined-space synthesis of single crystal TiO2 nanowires in atmospheric vessel at low temperature: a generalized approach, Scientific Reports 5 (2015) 8129.
    [160] C.W. Lin, C.L. Hung, M. Venkateswarlu, B.J. Hwang, Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries, J. Power Sources 146(1-2) (2005) 397-401.
    [161] X. Tao, J. Wang, Z. Ying, Q. Cai, G. Zheng, Y. Gan, H. Huang, Y. Xia, C. Liang, W. Zhang, Y. Cui, Strong Sulfur Binding with Conducting Magnéli-Phase TinO2n–1Nanomaterials for Improving Lithium–Sulfur Batteries, Nano Lett. 14(9) (2014) 5288-5294.
    [162] H. Lv, S. Mu, Nano-ceramic support materials for low temperature fuel cell catalysts, Nanoscale 6(10) (2014) 5063.
    [163] W. Xu, Z. Wu, S. Tao, Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells, J. Mater. Chem. A 4(42) (2016) 16272-16287.
    [164] J.M.S. Yujing Liu, Dina Fattakhova-Rohlfing, and Thomas Bein, Johann M. Feckl, Benjamin Mandlmeier, Jiri Rathousky, Oliver Hayden, NiobiumDoped Titania Nanoparticles, ACS Nano (2010).
    [165] Y.-H. Chung, S.J. Kim, D.Y. Chung, M.J. Lee, J.H. Jang, Y.-E. Sung, Tuning the oxygen reduction activity of the Pt–Ni nanoparticles upon specific anion adsorption by varying heat treatment atmospheres, PCCP 16(27) (2014) 13726.
    [166] R. Cui, L. Mei, G. Han, J. Chen, G. Zhang, Y. Quan, N. Gu, L. Zhang, Y. Fang, B. Qian, X. Jiang, Z. Han, Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability, Sci Rep 7 (2017) 41826.
    [167] X. Wang, Y. Orikasa, Y. Takesue, H. Inoue, M. Nakamura, T. Minato, N. Hoshi, Y. Uchimoto, Quantitating the Lattice Strain Dependence of Monolayer Pt Shell Activity toward Oxygen Reduction, J. Am. Chem. Soc. 135(16) (2013) 5938-5941.
    [168] S. Zhang, Y. Shao, G. Yin, Y. Lin, Recent progress in nanostructured electrocatalysts for PEM fuel cells, J. Mater. Chem. A 1(15) (2013) 4631.
    [169] V.T. Thanh Ho, K.C. Pillai, H.-L. Chou, C.-J. Pan, J. Rick, W.-N. Su, B.-J. Hwang, J.-F. Lee, H.-S. Sheu, W.-T. Chuang, Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells, Energy Environ. Sci. 4(10) (2011) 4194.
    [170] M.S. Saha, R. Li, X. Sun, S. Ye, 3-D composite electrodes for high performance PEM fuel cells composed of Pt supported on nitrogen-doped carbon nanotubes grown on carbon paper, Electrochem. Commun. 11(2) (2009) 438-441.
    [171] A. Kitada, G. Hasegawa, Y. Kobayashi, K. Kanamori, K. Nakanishi, H. Kageyama, Selective Preparation of Macroporous Monoliths of Conductive Titanium Oxides TinO2n–1(n= 2, 3, 4, 6), J. Am. Chem. Soc. 134(26) (2012) 10894-10898.
    [172] J.W.a.H. Yang, Pt@Nb-TiO2 Catalyst Membranes Fabricated by Electrospinning and
    Atomic Layer Deposition, (2013).
    [173] Z. Cui, L. Li, A. Manthiram, J.B. Goodenough, Enhanced cycling stability of hybrid Li-air batteries enabled by ordered Pd3Fe intermetallic electrocatalyst, J. Am. Chem. Soc. 137(23) (2015) 7278-81.
    [174] S. Koh, M.F. Toney, P. Strasser, Activity–stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR), Electrochim. Acta 52(8) (2007) 2765-2774.
    [175] X.L. Wang, M. Feygenson, H. Chen, C.H. Lin, W. Ku, J. Bai, M.C. Aronson, T.A. Tyson, W.Q. Han, Nanospheres of a new intermetallic FeSn5 phase: synthesis, magnetic properties and anode performance in Li-ion batteries, J. Am. Chem. Soc. 133(29) (2011) 11213-9.
    [176] Y. Vasquez, Z. Luo, R.E. Schaak, Low-Temperature Solution Synthesis of the Non-Equilibrium Ordered Intermetallic Compounds Au3Fe, Au3Co, and Au3Ni as Nanocrystals, J. Am. Chem. Soc. 130(36) (2008) 11866-11867.
    [177] C. Xiao, L.L. Wang, R.V. Maligal-Ganesh, V. Smetana, H. Walen, P.A. Thiel, G.J. Miller, D.D. Johnson, W. Huang, Intermetallic NaAu2 as a heterogeneous catalyst for low-temperature CO oxidation, J. Am. Chem. Soc. 135(26) (2013) 9592-5.
    [178] P.J. Meschter, W.L. Worrell, An investigation of high-temperature thermodynamic properties in the Pt-Ti system, Metall. Trans. A 7(2) (1976) 299-305.
    [179] S.J. Tauster, S.C. Fung, R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide, J. Am. Chem. Soc. 100(1) (1978) 170-175.
    [180] S.J. Tauster, Strong metal-support interactions, Acc. Chem. Res. 20(11) (1987) 389-394.
    [181] S.-H. Chien, B.N. Shelimov, D.E. Resasco, E.H. Lee, G.L. Haller, Characterization of the interaction between rhodium and titanium oxide by XPS, J. Catal. 77(1) (1982) 301-303.
    [182] H.-J. Song, M.-K. Han, H.-G. Jeong, Y.-T. Lee, Y.-J. Park, Microstructure Analysis of Ti-xPt Alloys and the Effect of Pt Content on the Mechanical Properties and Corrosion Behavior of Ti Alloys, Materials 7(5) (2014) 3990.
    [183] O. Ise, J. Onagawa, T. Goto, N. Ishii, T. Horikawa, Corrosion Resistance of Titanium-Platinum Alloy Prepared by Spark Plasma Sintering, J. Jpn. Inst. Met. 59(5) (1995) 554-558.
    [184] E. Ding, K.L. More, T. He, Preparation and characterization of carbon-supported PtTi alloy electrocatalysts, J. Power Sources 175(2) (2008) 794-799.
    [185] B.C. Beard, P.N. Ross, Platinum-titanium alloy formation from high-temperature reduction of a titania-impregnated platinum catalyst: implications for strong metal-support interaction, The Journal of Physical Chemistry 90(26) (1986) 6811-6817.
    [186] J. Ma, A. Habrioux, T. Miyao, K. Kakinuma, J. Inukai, M. Watanabe, N. Alonso-Vante, Correlation between surface chemical composition with catalytic activity and selectivity of organic-solvent synthesized Pt–Ti nanoparticles, J. Mater. Chem. A 1(31) (2013) 8798.
    [187] Y. He, X. Han, Y. Du, B. Song, P. Xu, B. Zhang, Bifunctional Nitrogen-Doped Microporous Carbon Microspheres Derived from Poly(o-methylaniline) for Oxygen Reduction and Supercapacitors, ACS Applied Materials & Interfaces 8(6) (2016) 3601-3608.
    [188] G. Wu, M.A. Nelson, N.H. Mack, S. Ma, P. Sekhar, F.H. Garzon, P. Zelenay, Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst, Chem. Commun. 46(40) (2010) 7489.
    [189] L. Pan, G. Yu, D. Zhai, H.R. Lee, W. Zhao, N. Liu, H. Wang, B.C.K. Tee, Y. Shi, Y. Cui, Z. Bao, Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity, Proceedings of the National Academy of Sciences 109(24) (2012) 9287-9292.
    [190] Z. Cui, H. Chen, M. Zhao, D. Marshall, Y. Yu, H. Abruna, F.J. DiSalvo, Synthesis of structurally ordered Pt3Ti and Pt3V nanoparticles as methanol oxidation catalysts, J. Am. Chem. Soc. 136(29) (2014) 10206-9.
    [191] W. Zhao, L. Yang, Y. Yin, M. Jin, Thermodynamic controlled synthesis of intermetallic Au3Cu alloy nanocrystals from Cu microparticles, J. Mater. Chem. A 2(4) (2014) 902-906.
    [192] E. Meku, C. Du, Y. Sun, L. Du, Y. Wang, G. Yin, Electrocatalytic Activity and Stability of Ordered Intermetallic Palladium-Iron Nanoparticles toward Oxygen Reduction Reaction, Journal of The Electrochemical Society 163(3) (2016) F132-F138.
    [193] P. Villars, Pearson's handbook of crystallographic data for intermetallic phases, in: L.D. Calvert (Ed.) ASM International, Materials Park, OH :, 1991.
    [194] H. Abe, F. Matsumoto, L.R. Alden, S.C. Warren, H.D. Abruña, F.J. DiSalvo, Electrocatalytic Performance of Fuel Oxidation by Pt3Ti Nanoparticles, J. Am. Chem. Soc. 130(16) (2008) 5452-5458.
    [195] T. Mohri, Theoretical Study of Spinodal Disordering and Disordering Relaxation, in: A. Meike, A. Gonis, P.E.A. Turchi, K. Rajan (Eds.), Properties of Complex Inorganic Solids 2, Springer US, Boston, MA, 2000, pp. 123-138.
    [196] H.A. Bethe, Statistical Theory of Superlattices, Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences 150(871) (1935) 552-575.
    [197] D. Bersani, G. Antonioli, P.P. Lottici, T. Lopez, Raman study of nanosized titania prepared by sol–gel route, Journal of Non-Crystalline Solids 232 (1998) 175-181.
    [198] A.L.J. Pereira, L. Gracia, A. Beltrán, P.N. Lisboa-Filho, J.H.D. da Silva, J. Andrés, Structural and Electronic Effects of Incorporating Mn in TiO2 Films Grown by Sputtering: Anatase versus Rutile, The Journal of Physical Chemistry C 116(15) (2012) 8753-8762.
    [199] G. Hasegawa, T. Sato, K. Kanamori, K. Nakano, T. Yajima, Y. Kobayashi, H. Kageyama, T. Abe, K. Nakanishi, Hierarchically Porous Monoliths Based on N-Doped Reduced Titanium Oxides and Their Electric and Electrochemical Properties, Chem. Mater. 25(17) (2013) 3504-3512.
    [200] Q. Jia, W. Liang, M.K. Bates, P. Mani, W. Lee, S. Mukerjee, Activity Descriptor Identification for Oxygen Reduction on Platinum-Based Bimetallic Nanoparticles: In Situ Observation of the Linear Composition–Strain–Activity Relationship, ACS Nano 9(1) (2015) 387-400.
    [201] L. Timperman, A. Lewera, W. Vogel, N. Alonso-Vante, Nanostructured platinum becomes alloyed at oxide-composite substrate, Electrochem. Commun. 12(12) (2010) 1772-1775.
    [202] G. Rocker, J.A. Schaefer, W. Göpel, Localized and delocalized vibrations on ${\mathrm{TiO}}_{2}$(110) studied by high-resolution electron-energy-loss spectroscopy, Physical Review B 30(7) (1984) 3704-3708.
    [203] A.N. Mansour, J.W. Cook, D.E. Sayers, Quantitative technique for the determination of the number of unoccupied d-electron states in a platinum catalyst using the L2,3 x-ray absorption edge spectra, The Journal of Physical Chemistry 88(11) (1984) 2330-2334.
    [204] B.J. Hwang, S.M.S. Kumar, C.-H. Chen, Monalisa, M.-Y. Cheng, D.-G. Liu, J.-F. Lee, An Investigation of Structure−Catalytic Activity Relationship for Pt−Co/C Bimetallic Nanoparticles toward the Oxygen Reduction Reaction, The Journal of Physical Chemistry C 111(42) (2007) 15267-15276.
    [205] L.-S. HSU, G.Y. GUO, J.D. DENLINGER, J.W. ALLEN, EXPERIMENTAL AND THEORETICAL STUDIES OF THE ELECTRONIC STRUCTURES OF AuAl2 AND PtGa2, Surf. Rev. Lett. 09(02) (2002) 1251-1255.
    [206] T. Toda, H. Igarashi, H. Uchida, M. Watanabe, Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co, J. Electrochem. Soc. 146(10) (1999) 3750-3756.
    [207] J. McBreen, S. Mukerjee, In Situ X‐Ray Absorption Studies of a Pt‐Ru Electrocatalyst, J. Electrochem. Soc. 142(10) (1995) 3399-3404.
    [208] F. Farges, G.E. Brown, J.J. Rehr, Ti $K$-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment, Physical Review B 56(4) (1997) 1809-1819.
    [209] A. Niltharach, S. Kityakarn, A. Worayingyong, J.T. Thienprasert, W. Klysubun, P. Songsiriritthigul, S. Limpijumnong, Structural characterizations of sol–gel synthesized TiO2 and Ce/TiO2 nanostructures, Physica B: Condensed Matter 407(15) (2012) 2915-2918.
    [210] L.X. Chen, T. Rajh, Z. Wang, M.C. Thurnauer, XAFS Studies of Surface Structures of TiO2 Nanoparticles and Photocatalytic Reduction of Metal Ions, The Journal of Physical Chemistry B 101(50) (1997) 10688-10697.
    [211] K. Huang, K. Sasaki, R.R. Adzic, Y. Xing, Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO2 nanocoating catalyst support, J. Mater. Chem. 22(33) (2012) 16824.
    [212] H. Song, T.G. Jeong, Y.H. Moon, H.H. Chun, K.Y. Chung, H.S. Kim, B.W. Cho, Y.T. Kim, Stabilization of oxygen-deficient structure for conducting Li4Ti5O12-delta by molybdenum doping in a reducing atmosphere, Sci Rep 4 (2014) 4350.
    [213] B.-J. Hsieh, M.-C. Tsai, C.-J. Pan, W.-N. Su, J. Rick, J.-F. Lee, Y.-W. Yang, B.-J. Hwang, Platinum loaded on dual-doped TiO2 as an active and durable oxygen reduction reaction catalyst, Npg Asia Materials 9 (2017) e403.
    [214] Y. Lei, J. Jelic, L.C. Nitsche, R. Meyer, J. Miller, Effect of Particle Size and Adsorbates on the L3, L2 and L1 X-ray Absorption Near Edge Structure of Supported Pt Nanoparticles, Top. Catal. 54(5-7) (2011) 334-348.
    [215] T. Toda, H. Igarashi, M. Watanabe, Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys, Journal of Electroanalytical Chemistry 460(1) (1999) 258-262.
    [216] V. Jalan, E.J. Taylor, Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid, Journal of The Electrochemical Society 130(11) (1983) 2299-2302.
    [217] P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts, Nat Chem 2(6) (2010) 454-460.
    [218] X.-Y. Lang, G.-F. Han, B.-B. Xiao, L. Gu, Z.-Z. Yang, Z. Wen, Y.-F. Zhu, M. Zhao, J.-C. Li, Q. Jiang, Mesostructured Intermetallic Compounds of Platinum and Non-Transition Metals for Enhanced Electrocatalysis of Oxygen Reduction Reaction, Adv. Funct. Mater. 25(2) (2015) 230-237.
    [219] M.-C. Tsai, T.-T. Nguyen, N.G. Akalework, C.-J. Pan, J. Rick, Y.-F. Liao, W.-N. Su, B.-J. Hwang, Interplay between Molybdenum Dopant and Oxygen Vacancies in a TiO2Support Enhances the Oxygen Reduction Reaction, ACS Catalysis 6(10) (2016) 6551-6559.
    [220] S.-i. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe, H. Tokoro, Synthesis of a metal oxide with a room-temperature photoreversible phase transition, Nat Chem 2(7) (2010) 539-545.
    [221] K. Tanaka, T. Nasu, Y. Miyamoto, N. Ozaki, S. Tanaka, T. Nagata, F. Hakoe, M. Yoshikiyo, K. Nakagawa, Y. Umeta, K. Imoto, H. Tokoro, A. Namai, S.-i. Ohkoshi, Structural Phase Transition between γ-Ti3O5and δ-Ti3O5by Breaking of a One-Dimensionally Conducting Pathway, Crystal Growth & Design 15(2) (2015) 653-657.
    [222] C. Hauf, R. Kniep, G. Pfaff, Preparation of various titanium suboxide powders by reduction of TiO2 with silicon, Journal of Materials Science 34(6) (1999) 1287-1292.
    [223] K. Prassides, Materials chemistry: illuminated oxides, Nat Chem 2(7) (2010) 517-9.
    [224] R. Makiura, T. Yonemura, T. Yamada, M. Yamauchi, R. Ikeda, H. Kitagawa, K. Kato, M. Takata, Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles, Nat Mater 8(6) (2009) 476-80.
    [225] J.C. Parker, R.W. Siegel, Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2, Appl. Phys. Lett. 57(9) (1990) 943-945.
    [226] I. Veremchuk, I. Antonyshyn, C. Candolfi, X. Feng, U. Burkhardt, M. Baitinger, J.T. Zhao, Y. Grin, Diffusion-controlled formation of Ti2O3 during spark-plasma synthesis, Inorg. Chem. 52(8) (2013) 4458-63.
    [227] E. Stoyanov, F. Langenhorst, G. Steinle-Neumann, The effect of valence state and site geometry on Ti L3,2 and O K electron energy-loss spectra of TixOy phases, Am. Mineral. 92(4) (2007) 577-586.
    [228] H. Song, S.-W. Yun, H.-H. Chun, M.-G. Kim, K.Y. Chung, H.S. Kim, B.-W. Cho, Y.-T. Kim, Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries, Energy Environ. Sci. 5(12) (2012) 9903.
    [229] N. Jiang, D. Su, J.C.H. Spence, Determination of Ti coordination from pre-edge peaks in TiK-edge XANES, Physical Review B 76(21) (2007).
    [230] G. Ouvrard, Z. Wu, XAFS study of charge transfer in intercalation compounds, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 133(1) (1997) 120-126.
    [231] D. Koningsberger, B. Mojet, G. Van Dorssen, D. Ramaker, XAFS spectroscopy; fundamental principles and data analysis, Top. Catal. 10(3-4) (2000) 143-155.
    [232] B.-J. Hwang, L.S. Sarma, C.-H. Chen, C. Bock, F.-J. Lai, S.-H. Chang, S.-C. Yen, D.-G. Liu, H.-S. Sheu, J.-F. Lee, Controlled Synthesis and Characterization of Rucore−Ptshell Bimetallic Nanoparticles, The Journal of Physical Chemistry C 112(50) (2008) 19922-19929.
    [233] B.-J. Hsieh, M.-C. Tsai, C.-J. Pan, W.-N. Su, J. Rick, H.-L. Chou, J.-F. Lee, B.-J. Hwang, Tuning metal support interactions enhances the activity and durability of TiO2-supported Pt nanocatalysts, Electrochim. Acta 224 (2017) 452-459.
    [234] A. Kumar, V. Ramani, Ta0.3Ti0.7O2 Electrocatalyst Supports Exhibit Exceptional Electrochemical Stability, J. Electrochem. Soc. 160(11) (2013) F1207-F1215.
    [235] A. Kumar, V.K. Ramani, Ta Modified TiO2 Supports Exhibit Exceptional Durability in Polymer Electrolyte Fuel Cells, Meeting Abstracts MA2013-02(15) (2013) 1629.
    [236] J. Wu, Z. Peng, H. Yang, Supportless oxygen reduction electrocatalysts of CoCuPt hollow nanoparticles, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368(1927) (2010) 4261-4274.

    QR CODE