簡易檢索 / 詳目顯示

研究生: 林克峯
Ke-Feng Lin
論文名稱: 無線感測系統應用於大量傷患及加護病房生理訊號監控研究
Study on Wireless Sensor System Applied to Mass Casualty Care and Intensive Care Unit Monitoring
指導教授: 郭重顯
Chung-Hsien Kuo
陳炳男
Ping-Nan Chen
口試委員: 許昕
Hsin Hsiu
許維君
Wei-Chun Hsu
林世崧
Shih-Sung Lin
鍾武勳
Wu-Hsun Chung
李汶墾
Wen-Ken Li
郭重顯
Chung-Hsien Kuo
陳炳男
Ping-Nan Chen
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 112
中文關鍵詞: 無線感測網路大量傷患加護病房圖形化使用者介面
外文關鍵詞: Wireless sensor network, Mass casualty, Intensive care unit, Graphical user interface
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以無線感測網絡(WSN)應用在大規模傷亡事件(Mass Casualty Incident)發生時,醫療機構必需即時處理大量傷患(Mass Casualty)之監測場景。另透過圖形化使用者介面(GUI)技術,模擬重症加護病房病患生理訊號監測。藉由建立傷患生理訊號節點有效管理與病患即時生理訊號監測機制,可提升醫護人員對大量傷患及重症病人之掌握程度與病人安全。而所設計之智慧閘道器更可提供遠距生理訊號監測功能。
    實驗場景中使用了無線網絡技術為重症加護病房(ICU)開發監測系統,以不同視角進行監測,並依照使用者的需求修改監控介面,同時解決不同監測區域皆需安裝系統才得以使用的情況。模擬場景中所架設之介面,可使醫療人員能夠迅速掌握監測數據趨勢並處理數據中的突發異常情況。特別是在發生新興傳染病大量病患湧入醫院隔離病房時,確保醫護人員之安全,亦藉由本監測系統顯現出來。
    與傳統大量傷患處置病患之方法相比,所提出的無線感測節點管理機制更快、更可靠且使用更直觀,而圖形化介面應用於監測大量病患的基本生理數值,使護理人員能以最快的速度得知病患當前的狀況以對症下藥。並且在模擬重症加護病房環境監視場景,切換GUI畫面需要的時間亦相較傳統方法要縮短了許多倍。最終結果表明該系統擁有友善的操作介面、較低的成本及非常快的速度,為眾多病患提供最即時且適切的治療。


    This study applied a wireless sensor network (WSN) to the monitoring of patients during mass casualty incidents, when medical institutions must provide mass casualty care. We used graphical user interface (GUI) technology to simulate the monitoring of patient physiological signals in the intensive care unit (ICU). We established node-effective management and real-time monitoring mechanisms for patient physiological signals, which can improve the grasp and control of healthcare personnel over mass casualties and critically ill patients as well as increase patient safety. We designed smart gateway that offers remote physiological signal monitoring functions.
    In our experiments, we used wireless network technology to develop a monitoring system for the intensive care unit (ICU) with visuals of patients from different angles. The monitoring interface can be altered based on user needs, and at the same time, there is no need for systems to be installed in each monitored area before they can be used. As a result, the proposed system enables healthcare personnel to swiftly see trends in monitoring data and handle any sudden anomalies. This is especially important to the safety of the healthcare personnel when there is a huge influx of patients with an emerging infectious disease requiring isolation wards.
    Compared to conventional methods of dealing with mass casualties, the proposed wireless sensor node management mechanisms are faster, more reliable, and more intuitive. The application of a GUI to basic physiological signal monitoring for numerous patients enables nurses to know the current conditions of patients and treat them with the fastest speed. Simulations of ICU monitoring revealed that switching GUI screens using the proposed system was faster than that using conventional methods. The final results indicate that the proposed system has a user-friendly operation interface, lower cost, and faster speed, enabling the most immediate and appropriate treatment for numerous patients.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3論文架構 3 第二章 文獻探討 4 2.1 大量傷患處置機制探討 4 2.2 加護病房照護機制探討 5 2.3 研究範圍與研究架構 9 第三章 無線感測系統應用於大量傷患生理訊號監控研究 10 3.1 無線感測監控系統之簡介 10 3.2 無線感測網路傳輸效率最佳化設計 12 3.2.1 樹狀無線感測網路之感測器資料傳輸架構 13 3.2.2 具可靠傳輸之資料蒐集機制 21 3.2.3 資料可靠傳輸設計機制 23 3.2.4 路由控制器端輪詢方式之資料可靠蒐集設計 27 3.2.5無線感測網路架構設計與佈署 41 3.3 評估與討論 51 3.4 小結 57 第四章 新穎監控圖形介面於加護病房應用研究 58 4.1 簡介 58 4.2 監控圖形介面 61 4.2.1 隨需建立監控圖形介面機制 62 4.2.2 智慧閘道器功能設計 68 4.2.3 圖形化即時監控建立機制 81 4.3 模擬場景佈署 82 4.3.1 應用架構與場景介紹 82 4.3.2 監控介面建置設定 85 4.4 評估與討論 90 4.5 小結 91 第五章 總結與未來研究方向 92 5.1 總結 92 5.2 未來研究方向 93 參考文獻 94

    [1] Farahani S. ZigBee wireless networks and transceivers: newnes; 2011.
    [2] Shieh JS, Fu M, Huang SJ, Kao MC. Comparison of the applicability of rule-based and self-organizing fuzzy logic controllers for sedation control of intracranial pressure pattern in a neurosurgical intensive care unit. IEEE transactions on biomedical engineering 2006, 53(8):1700-1705.
    [3] Gholami B, Bailey JM, Haddad WM, Tannenbaum AR. Clinical decision support and closed-loop control for cardiopulmonary management and intensive care unit sedation using expert systems. IEEE transactions on control systems technology 2011, 20(5):1343-1350.
    [4] Clifford GD, Silva I, Moody B, Li Q, Kella D, Chahin A, Kooistra T, Perry D, Mark RG. False alarm reduction in critical care. Physiological measurement 2016, 37(8):E5.
    [5] Behar J, Oster J, Li Q, Clifford GD. ECG signal quality during arrhythmia and its application to false alarm reduction. IEEE transactions on biomedical engineering 2013, 60(6):1660-1666.
    [6] Krasteva V, Jekova I, Leber R, Schmid R, Abächerli R. Real-time arrhythmia detection with supplementary ECG quality and pulse wave monitoring for the reduction of false alarms in ICUs. Physiological measurement 2016, 37(8):1273.
    [7] Lameski P, Zdravevski E, Koceski S, Kulakov A, Trajkovik V. Suppression of intensive care unit false alarms based on the arterial blood pressure signal. IEEE Access 2017, 5:5829-5836.
    [8] Villarroel M, Guazzi A, Jorge J, Davis S, Watkinson P, Green G, Shenvi A, McCormick K, Tarassenko L. Continuous non-contact vital sign monitoring in neonatal intensive care unit. Healthcare technology letters 2014, 1(3):87-91.
    [9] Raboshchuk G, Nadeu C, Jančovič P, Lilja AP, Köküer M, Mahamud BM, De Veciana AR. A knowledge-based approach to automatic detection of equipment alarm sounds in a neonatal intensive care unit environment. IEEE journal of Translational Engineering in Health and Medicine 2017, 6:1-10.
    [10] Silva R, Silva JS, Silva A, Pinto F, Simek M, Boavida F. Wireless sensor networks in intensive care units. In: 2009 IEEE International Conference on Communications Workshops: 2009. IEEE: 1-5.
    [11] 大量燒傷病患到院前運送最佳化方式之研究, access on Jun. 28, 2021. Available: https://hdl.handle.net/11296/syneep
    [12] Traub SJ, Bartley AC, Smith VD, Didehban R, Lipinski CA, Saghafian S. Physician in triage versus rotational patient assignment. The Journal of emergency medicine 2016, 50(5):784-790.
    [13] Kuo LW, Yen CI, Fu CY, Pan CH, Hsu CP, Hsiao YC, Hsieh CH, Hsu YP. The role of preliminary hospitals in the management of a mass burn casualty disaster. Burns 2018, 44(4):800-806.
    [14] 如何避免下一場大規模「粉塵火災」, access on Jun. 28, 2021. Available: https://opinion.udn.com/opinion/story/6663/1022841
    [15] Thompson K, Hammond N, Eastwood G, Festa M, Glass P, Rajbhandari D, Seppelt I, Taylor C, Watts N, Myburgh J. The Australian and New Zealand intensive care society clinical trials group point prevalence program, 2009-2016. Critical Care and Resuscitation 2017, 19(1):88-93.
    [16] Sellers D, Ranse J. The impact of mass casualty incidents on intensive care units. Australian critical care 2020, 33(5):469-474.
    [17] Smith G, Nielsen M. Criteria for admission. Bmj 1999, 318(7197):1544-1547.
    [18] Palanca I, Sánchez A, Elola J: Unidad de cuidados intensivos. Estándares y recomendaciones. Ministerio de Sanidad y Política Social: Madrid, Spain 2010.
    [19] Nimmo GR, Singer M. ABC of intensive care, vol. 147: John Wiley & Sons; 2011.
    [20] Batchelor A, Nightingale P. General principles of intensive care management. ABC of Intensive Care (G Nimmo and M Singer, eds) 2011:14-19.
    [21] Bennett D, Bion J. Organisation of intensive care. Bmj 1999, 318(7196):1468-1470.
    [22] Andrade E, Quinlan L, Harte R, Byrne D, Fallon E, Kelly M, Casey S, Kirrane F, O'Connor P, O'Hora D. Novel interface designs for patient monitoring applications in critical care medicine: human factors review. JMIR human factors 2020, 7(3):e15052.
    [23] Watt RC, Maslana ES, Mylrea KC. Alarms and anesthesia: challenges in design of intelligent systems for patient monitoring. IEEE Engineering in Medicine and Biology Magazine 1993, 12(4):34-41.
    [24] McVicar A. Workplace stress in nursing: a literature review. Journal of advanced nursing 2003, 44(6):633-642.
    [25] Hillman KM, Bristow PJ, Chey T, Daffurn K, Jacques T, Norman SL, Bishop GF, Simmons G. Duration of life-threatening antecedents prior to intensive care admission. Intensive care medicine 2002, 28(11):1629-1634.
    [26] Kause J, Smith G, Prytherch D, Parr M, Flabouris A, Hillman K. A comparison of antecedents to cardiac arrests, deaths and emergency intensive care admissions in Australia and New Zealand, and the United Kingdom—the ACADEMIA study. Resuscitation 2004, 62(3):275-282.
    [27] Buist M, Bernard S, Nguyen TV, Moore G, Anderson J. Association between clinically abnormal observations and subsequent in-hospital mortality: a prospective study. Resuscitation 2004, 62(2):137-141.
    [28] Smith GB, Prytherch DR, Schmidt PE, Featherstone PI, Kellett J, Deane B, Higgins B. Should age be included as a component of track and trigger systems used to identify sick adult patients? Resuscitation 2008, 78(2):109-115.
    [29] Bleyer AJ, Vidya S, Russell GB, Jones CM, Sujata L, Daeihagh P, Hire D. Longitudinal analysis of one million vital signs in patients in an academic medical center. Resuscitation 2011, 82(11):1387-1392.
    [30] Mok W, Wang W, Cooper S, Ang ENK, Liaw SY. Attitudes towards vital signs monitoring in the detection of clinical deterioration: scale development and survey of ward nurses. International Journal for Quality in Health Care 2015, 27(3):207-213.
    [31] Ludikhuize J, Smorenburg SM, de Rooij SE, de Jonge E. Identification of deteriorating patients on general wards; measurement of vital parameters and potential effectiveness of the Modified Early Warning Score. Journal of critical care 2012, 27(4):424. e427-424. e413.
    [32] Taenzer AH, Spence BC. The afferent limb of rapid response systems: Continuous monitoring on general care units. Critical care clinics 2018, 34(2):189-198.
    [33] DeVita MA, Smith GB, Adam SK, Adams-Pizarro I, Buist M, Bellomo R, Bonello R, Cerchiari E, Farlow B, Goldsmith D. “Identifying the hospitalised patient in crisis”—a consensus conference on the afferent limb of rapid response systems. Resuscitation 2010, 81(4):375-382.
    [34] Kellett J, Sebat F. Make vital signs great again–A call for action. European journal of internal medicine 2017, 45:13-19.
    [35] Krauchi K, Wirz-Justice A. Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 1994, 267(3):R819-R829.
    [36] Chester JG, Rudolph JL. Vital signs in older patients: age-related changes. Journal of the American Medical Directors Association 2011, 12(5):337-343.
    [37] Downey C, Chapman S, Randell R, Brown J, Jayne D. The impact of continuous versus intermittent vital signs monitoring in hospitals: A systematic review and narrative synthesis. International journal of nursing studies 2018, 84:19-27.
    [38] McGrath SP, Taenzer AH, Karon N, Blike G. Surveillance monitoring management for general care units: strategy, design, and implementation. The Joint Commission Journal on Quality and Patient Safety 2016, 42(7):293-302.
    [39] Cvach M: Monitor alarm fatigue. an integrative review. Biomedical instrumentation & technology 2012, 46(4):268-277.
    [40] Hravnak M, Pellathy T, Chen L, Dubrawski A, Wertz A, Clermont G, Pinsky MR. A call to alarms: current state and future directions in the battle against alarm fatigue. Journal of electrocardiology 2018, 51(6):S44-S48.
    [41] Ida IB, Balti M, Chabaane S, Jemai A. Self-adaptative Early Warning Scoring system for smart hospital. In: International Conference on Smart Homes and Health Telematics: 2020. Springer: 16-27.
    [42] Li S, Da Xu L, Zhao S. The internet of things: a survey. Information Systems Frontiers 2015, 17(2):243-259.
    [43] Mell P, Grance T. The NIST definition of cloud computing. 2011.
    [44] Hands C, Reid E, Meredith P, Smith GB, Prytherch DR, Schmidt PE, Featherstone PI. Patterns in the recording of vital signs and early warning scores: compliance with a clinical escalation protocol. BMJ quality & safety 2013, 22(9):719-726.
    [45] Kyriacos U, Jelsma J, James M, Jordan S. Monitoring vital signs: development of a modified early warning scoring (MEWS) system for general wards in a developing country. PloS one 2014, 9(1):e87073.
    [46] Khanna AK, Hoppe P, Saugel B. Automated continuous noninvasive ward monitoring: future directions and challenges. Critical Care 2019, 23(1):1-5.
    [47] Chen M, Gonzalez S, Vasilakos A, Cao H, Leung VC: Body Area Networks. A Survey, Mobile Networks and Applications, Vol. 16. 2011.
    [48] Selvarani SJ. Online health monitoring system using zigbee. International Journal on Computer Science and Engineering 2011, 3(4):1578-1583.
    [49] Gündoğdu K, Çalhan A. An implementation of wireless body area networks for improving priority data transmission delay. Journal of medical systems 2016, 40(3):75.
    [50] Palan N, Barbadekar B, Patil S. Low energy adaptive clustering hierarchy (LEACH) protocol: A retrospective analysis. In: 2017 International conference on inventive systems and control (ICISC): 2017. IEEE: 1-12.
    [51] 孫立民、李建中、陳渝、朱紅松,無線傳感器網路,清華大學出版社,北京,中國,第268-270頁,2005。
    [52] Bontempi G, Le Borgne Y. An adaptive modular approach to the mining of sensor network data. In: proceedings of 1st International Workshop on Data Mining in Sensor Networks as part of the SIAM International Conference on Data Mining: 2005. SIAM Press Newport Beach, CA: 3-9.
    [53] Pan MS, Tseng YC. Quick convergecast in zigbee beacon-enabled tree-based wireless sensor networks. Computer communications 2008, 31(5):999-1011.
    [54] Bertocco M, Gamba G, Sona A, Vitturi S. Experimental characterization of wireless sensor networks for industrial applications. IEEE Transactions on Instrumentation and Measurement 2008, 57(8):1537-1546.
    [55] Harrison RR, Fotowat H, Chan R, Kier RJ, Olberg R, Leonardo A, Gabbiani F. Wireless neural/EMG telemetry systems for small freely moving animals. IEEE transactions on biomedical circuits and systems 2011, 5(2):103-111.
    [56] Kim D, Song H, Lee K, Sung J. UPnP-based sensor network management architecture. In: Second International Conference on Mobile Computing and Ubiquitous Networking: 2005. ICMU: 0-0.
    [57] Cha SH, Choi J, Song J. A self-management framework for wireless sensor networks. In: Asia-Pacific Web Conference: 2006. Springer: 206-213.
    [58] Lin SS, Lan CW, Chen PN, Wu YH. A Reliable Data Collection Scheme with Efficiency Consideration for ZigBee Wireless Sensor Network Applications. Sensors and Materials 2015, 27(8):773-785.
    [59] Fernandez-Lopez H, Afonso JA, Correia JH, Simoes R. Remote Patient Monitoring Based on ZigBee: Lessons from a Real-World Deployment. Telemedicine and e-Health 2014, 20(1):47-54.
    [60] Cui S, Madan R, Goldsmith A, Lall S. Energy-delay tradeoffs for data collection in TDMA-based sensor networks. In: IEEE International Conference on Communications, 2005 ICC 2005 2005: 2005. IEEE: 3278-3284.
    [61] Messina D, Ortolani M, Re GL. Reliable data gathering in tree-based ieee 802.15. 4 wireless sensor networks. In: 2007 Fourth Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services (MobiQuitous): 2007. IEEE: 1-7.
    [62] Pierce F, Elliott T. Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington. Computers and electronics in agriculture 2008, 61(1):32-43.
    [63] Cao X, Chen J, Zhang Y, Sun Y. Development of an integrated wireless sensor network micro-environmental monitoring system. ISA transactions 2008, 47(3):247-255.
    [64] Hu F, Jiang M, Celentano L, Xiao Y. Robust medical ad hoc sensor networks (MASN) with wavelet-based ECG data mining. Ad hoc networks 2008, 6(7):986-1012.
    [65] Lee YD, Chung WY. Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring. Sensors and Actuators B: Chemical 2009, 140(2):390-395.
    [66] Junnila S, Kailanto H, Merilahti J, Vainio AM, Vehkaoja A, Zakrzewski M, Hyttinen J. Wireless, multipurpose in-home health monitoring platform: two case trials. IEEE Transactions on Information Technology in Biomedicine 2009, 14(2):447-455.
    [67] Crowley K, Frisby J, Murphy S, Roantree M, Diamond D. Web-based real-time temperature monitoring of shellfish catches using a wireless sensor network. Sensors and Actuators A: Physical 2005, 122(2):222-230.
    [68] Malatras A, Asgari A, Baugé T. Web enabled wireless sensor networks for facilities management. IEEE systems journal 2008, 2(4):500-512.
    [69] Postolache OA, Pereira JD, Girao PS. Smart sensors network for air quality monitoring applications. IEEE transactions on instrumentation and measurement 2009, 58(9):3253-3262.
    [70] Wu J, Yuan S, Ji S, Zhou G, Wang Y, Wang Z. Multi-agent system design and evaluation for collaborative wireless sensor network in large structure health monitoring. Expert Systems with Applications 2010, 37(3):2028-2036.
    [71] Wu S, Clements-Croome D. Understanding the indoor environment through mining sensory data—A case study. Energy and Buildings 2007, 39(11):1183-1191.
    [72] Wang L. Wise-ShopFloor: an integrated approach for web-based collaborative manufacturing. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 2008, 38(4):562-573.

    無法下載圖示 全文公開日期 2024/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE