簡易檢索 / 詳目顯示

研究生: 蔡易霖
I-Lin Tsai
論文名稱: 圓極化自振式主動集成天線之實現與毫米波天線陣列設計
Realization of Circularly Polarized Self-Oscillating Active Integrated Antenna and Millimeter-Wave Antenna designs
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 廖文照
Wen-Jiao Liao
陳晏笙
Yen-Sheng Chen
林坤佑
Kun-You Lin
朱輝南
Huy-Nam Chu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: 圓極化自振式主動集成天線交錯耦合對天線陣列毫米波都卜勒雷達雷達系統
外文關鍵詞: millimeter-wave antenna, gain enhancement
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究包含兩項獨立研究主題。
    第一部份為「圓極化自振式主動集成天線之實現」,其創新之處在於將自振式主動集成天線與圓極化天線整合,以解決當發射端與接收端面臨極化不匹配時所造成極化損失的問題。本研究提出兩款新穎的圓極化自振式主動集成天線,將交錯耦合對與回授元件整合後加入天線之輻射元件,其中,交錯耦合對能提供一組穩定的相位差與功率激發天線,在圓極化天線設計中可確保使相位固定與有效的輻射,其等效全向輻射功率最高可達 11 dBm 與 23.7% 的轉換效率,並且在主波束之xz平面與yz平面上分別可提供100度與70度之可用圓極化範圍。
    第二部份為「毫米波車用雷達天線陣列設計」,此設計共包含 77 GHz 與 24 GHz 天線設計議題。其中,77 GHz天線在模擬與量測因素上會有較多的限制與不確定因素,故在此議題上會針對如何模擬軟體中得到更加精準的數值與環境的建置,並在實際量測架構上多加琢磨,以驗證天線模擬與實際量測之結果;24 GHz天線將針對車內天線應用,並解決其車內因波束指向非需要區域而導致硬體無法辨識問題。本天線之創新之處為利用一耦合元件,實現了增益提升與針對非必要角度之增益抑制的結果,最終滿足車內天線的應用。
    本論文將詳細闡述兩大獨立研究主題,包含了其研究動機與設計理念,並從模擬與實際量測中建立比較,與說明模擬與量測數據的差異或一致性。


    This thesis consists of two independent researches. In the first part, two different kinds of novel circularly polarized self-oscillating active integrated (CP−AIA) is proposed and demonstrated. For the first proposed design consists of a cross-coupled pair (XCP) oscillator and a monopole antenna, which use single excitation and an inverted L-shaped strip attached to one side of the ground plane to generate circularly polarized radiation. The second proposed design consists of a XCP oscillator and a ring slot antenna, which use two excitation with 90° phase difference to generate two orthogonal E-field to implement CP characteristic. These two fabricated antennas shows a stable oscillation at 916 MHz (monopole) and 912 MHz (ring-slot antenna) for ultra high frequency (UHF) radio frequency identification (RFID) applications. The measured highest proposed design DC-to-RF conversion efficiency is 23.7% and equivalent isotropically radiated power (EIRP) is 11 dBm, which can provide 100° and 70° 3 dB axial ratio (AR) beamwidth in two principle cuts.
    In the second part, two designs of millimeter-wave (mm-wave) antenna array is studied. First, the 77 GHz antenna design with its process validation will be demonstrate in this thesis. All the simulation result is corresponded to the measurement result, which can verify the manufacture process. Second, the 24 GHz mm wave antenna design for automotive will discuss and design, a 2 × 2 antenna array and a novel coupled element for gain enhancement has been proposed in this design, which can improve the gain focus on the desire area and suppress the gain on the undesired area, compared with the array without coupled element, with a simple and low-profile coupling element can improve the peak gain at least 16.7%.

    摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 5 1.4 論文組織 6 第二章 圓極化自振式主動集成天線之實現 7 2.1 前言 7 2.2 自振式主動集成天線之設計與分析流程 8 2.3 以交錯耦合對實線自振式主動集成天線 9 2.4 電晶體模型之量測與建立 11 2.5 單極天線與交錯耦合對之整合 19 2.5.1 回授網路設計 19 2.5.2 單極天線分析與設計 22 2.5.3 模擬與量測結果 28 2.6 環形開槽天線與交錯耦合對之整合 33 2.6.1 回授網路設計 33 2.6.2 環形開槽天線分析與設計 34 2.6.3 模擬與量測結果 39 2.7 文獻效力比較 42 2.8 結語 43 第三章 毫米波車用雷達天線陣列設計 44 3.1 前言 44 3.2 77 GHz串列微帶天線 45 3.2.1 設計原理 45 3.2.2 量測架構與結果比較 50 3.3 都卜勒雷達之天線陣列 63 3.3.1 設計規格與評估 63 3.3.2 Case 1:純PCB與天線(無雷達罩) 66 3.3.3 Case 2:考慮雷達罩之影響 68 3.3.4 Case 3:加入耦合結構 72 3.3.5 Case 4:安裝環境之考量 75 3.3.6 耦合結構之參數分析 79 3.4. 結語 83 第四章 結論 84 4.1 結論 84 4.2 未來發展 85 參考文獻 86

    [1] D. van Wageningen and T. Staring, “The Qi wireless power standard,” in Proc. 14th Int. Power Electron. Motion Control Conf. (EPE-PEMC), Sep. 2010, pp. S15-25–S15-32.
    [2] 中華民專利號「M565439」,「行動裝置之廣用型無線充電承座」吳偉傑
    [3] 中華民專利號「M557928」,「無線充電保護套」許鈞傑
    [4] 中華民專利號「I636629」,「具無線充電之延長線插座」飛勝科技有限公司
    [5] Y.-J. Won, S.-O. Lim, Y.-K. Moon, Y.-S. Lim, Y.-H. Kim, “Method and system for multi wireless charging,” U.S. Patent 9 059 599, Jun. 16, 2015.
    [6] A. Saidi, D. Esteves, S. K. K. Laval, “Networking device, system and method for the creation of portable proximity communication networks,” U.S. Patent 9 088 439, Nov. 8, 2012.
    [7] S. Karush, “Distracted driving,” Insurance institute for highway safety article, [Online]. Available: https://www.iihs.org/api/datastoredocument/status-report/pdf/54/1
    [8] Z. Popović, E. A. Falkenstein, D. Costinett, and R. Zane, “Low-power far-field wireless powering for wireless sensors,” Proc. IEEE, vol. 101, no. 6, pp. 1397–1409, Jun. 2013.
    [9] J. Masuch, M. Delgado-Restituto, D. Milosevic, and P. Baltus, “Co-integration of an RF energy harvester into a 2.4 GHz transceiver,” IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1565–1574, Jul. 2013.
    [10] H. Reinisch et al., “An electro-magnetic energy harvesting system with 190 nW idle mode power consumption for a BAW based wireless sensor node,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1728–1741, Jul. 2011.
    [11] C. H. P. Lorenz et al., “Breaking the efficiency barrier for ambient microwave power harvesting with heterojunction backward tunnel diodes,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4544–4555, Dec. 2015.
    [12] Y.-S. Chen and C.-W. Chiu, “Maximum achievable power conversion efficiency obtained through an optimized rectenna structure for RF energy harvesting,” IEEE Antenna Wireless Propag., vol. 65, no. 5, pp. 2305–2317, May 2017.
    [13] H. P. Moyer and R. A. York, “Active cavity-backed slot antenna using MESFETs,” IEEE Microw. Guided Wave Lett., vol. 3, no. 4, pp. 95–97, Apr. 1993.
    [14] K. H. Y. Ip and G. V. Eleftheriades, “A compact CPW-based single-layer injection-locked active antenna for array applications,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 2, pp. 481–486, Feb. 2002.
    [15] J. W. Andrews and P. S. Hall, “Phase-locked-loop control of active microstrip patch antennas,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 201–206, Jan. 2002.
    [16] Y. Chen and Z. Chen, “A dual-gate FET subharmonic injection-locked self-oscillating active integrated antenna for RF transmission,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 6, pp. 199–201, Jun. 2003.
    [17] M. D. Upadhayay, A. Basu, M. P. Abegaonkar, and S. K. Koul, “Active integrated antenna using BJT with floating base,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 4, pp. 202–204, Apr. 2013.
    [18] W. J. Tseng and S. J. Chung, “Analysis and application of a two-port aperture-coupled microstrip antenna,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 5, pp. 530–535, May 1998.
    [19] K. H. Y. Ip, T. M. Y. Kan, and G. V. Eleftheriades, “A single-layer CPW-FED active patch antenna,” IEEE Microw. Guided Wave Lett., vol. 10, no. 2, pp. 64–66, Feb. 2000.
    [20] J. Birkland and T. Itoh, “A circularly polarized FET oscillator active radiating element,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1991, pp. 1265–1268.
    [21] L. Dussopt and J. M. Laheurte, “Coupled oscillator array generating circular polarization,” IEEE Microw. Guided Wave Lett., vol. 9, pp. 160–162, Apr. 1999.
    [22] S.-D. Yang, V. F. Fusco and D. E. J. Humphrey, “Ring-coupled-oscillator sequentially rotated active antenna,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 8, pp. 1492–1497, Aug. 2001.
    [23] R. K. Singh, A. Basu, and S. K. Koul, “Asymmetric coupled polarization switchable oscillating active integrated antenna,” Asia-Pacific Microw. Conf. (APMC), pp. 1–4, Nov. 2016.
    [24] Y S. Sengupta, D. R. Jackson, and S. Long, “A method for analyzing a linear series-fed rectangular microstrip antenna array,” IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3731–3736, Aug. 2015.
    [25] P. C. Stickland, “Series-fed microstrip patch arrays with periodic loading,” IEEE Trans. Antennas Propag., vol. 43, pp. 1472–1474, Dec. 1995.
    [26] T. Yuan, N. Yuan and L. W. Li, “A Novel Series-Fed Taper Antenna Array Design,” IEEE Trans. Antennas Propag. Lett., vol. 7, pp. 362–365, July 2008.
    [27] T.-Y. Yang, W. Hong, and Y. Zhang, “Wideband millimeter-wave substrate integrated waveguide cavity-backed rectangular patch antenna,” IEEE Antenna Wireless Propag. Lett., vol. 13, pp. 205–208, Feb. 2014.
    [28] T. Mikulasek, A. Georgiadis, A. Collado, and J. Lacik, “2×2 microstrip patch antenna fed by substrate integrated waveguide for radar applications,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1287–1290, Sep. 2013.
    [29] R. A. Alhalabi and G. M. Rebeiz, “Differentially-fed millimeter-wave Yagi-Uda antennas with folded dipole feed,” IEEE Trans Antennas Propag., vol. 58, no. 3, pp. 966–969, Mar. 2010.
    [30] P. R. Grajek, B. Schoenlinner, and G. M. Rebeiz, “A 24-GHz high-gain Yagi-Uda antenna array,” IEEE Trans. Antennas Propag., vol. 52, no. 5, pp. 1257–1261, May 2004.
    [31] D. Wu, Z. Tong, R. Reuter, H. Gulan, and J. Yang, “A 76.5 GHz microstrip comb-line antenna array for automotive radar system,” 2015 9th European Conf. on Antennas and Propagation (EuCAP), Apr. 2015, pp. 1–3.
    [32] S. Sugawa, K. Sakakibara, N. Kikuma, and H. Hirayama, “Low-sidelobe design of microstrip comb-line antennas using stub-integrated radiating elements in the millimeter-wave band,” IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4699–4709, Oct. 2012.
    [33] Y. Hayashi, K. Sakakibara, M. Nanjo, S. Sugawa, N. Kikuma, and H. Hirayama, “Millimeter-wave microstrip comb-line antenna using reflection-canceling slit structure,” IEEE Trans. Antennas Propag., vol. 59, no. 2, pp. 398–406, Feb. 2011.
    [34] M.-C. Tang, F.-K. Wang, and T.-S. Horng, “A single radar-based vital sign monitoring system with resistance to large body motion,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2017, pp. 1–4.
    [35] T.-W. Hsu and C.-H. Tseng, “Compact 24-GHz Doppler radar module for non-contact human vital-sign detection,” in Proc. Int. Symp. Antennas Propag. (ISAP), Oct. 2016, pp. 994–995.
    [36] Z.-H. Liu, Y.-W. Chang and T.-G. Ma, “High-efficiency self-oscillating active integrated antenna using metamaterial resonators and its application to multicarrier radio frequency identification systems,” IEEE Trans. Antennas Propag., vol. 64, no. 9, pp. 3803–3810, Sept. 2016.
    [37] Y.-W. Chang and T.-G. Ma, “Zeroth-order self-oscillating active integrated antenna using cross-coupled pair,” IEEE Trans. Antennas Propag., vol. 65, no. 10, pp. 5011–5018, Oct. 2017.
    [38] Z.-H. Liu, H.-N. Chu and T.-G. Ma, “Self-oscillating active integrated antenna with harmonic suppression using metamaterial resonators and ground radiation,” IEEE Antenna Wireless Propag. Lett., vol. 17, no. 9, pp.1687–1691, Sept. 2018.
    [39] C. A. Balanis, Antenna Theory: Analysis and Design. New York, NY, USA: Wiley, 2016.
    [40] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design. Upper Saddle River, NJ, USA: Prentice-Hall, 1996.
    [41] J. Keller, “Circuit materials secure automotive safety systems,” Microwaves & RF article [Online]. Available: https://www.mwrf.com/materials/circuit-materials-secure-automotive-safety-systems
    [42] D. J. Kozakoff, Analysis of Radome-Enclosed Antennas. Boston, MA, USA: Artech House, 2009.

    無法下載圖示 全文公開日期 2024/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE