簡易檢索 / 詳目顯示

研究生: 王建民
Jian-min Wang
論文名稱: 氬焊機驅動變頻器研製
Study and Implementation of an inverter for Driving an Arc Welding Machine
指導教授: 羅有綱
Yu-Kang Lo
口試委員: 劉添華
Tian-Hua, Liu
劉昌煥
Chang-Huan, Liu
潘晴財
Ching-Tsai Pan
梁從主
T. J. Liang
陳建富
J. F. Chen
謝冠群
Guan-Chyun Hsieh
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 109
中文關鍵詞: 氬焊設備雙電感型變頻器耦合電感型變頻器
外文關鍵詞: Arc welding machines, double-inductor type, coupled-inductor type
相關次數: 點閱:585下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氬焊設備在國家的重大建設中,是一項非常重要的技術,常被應用於建築業與汽車工業。依照焊接物的不同,氬焊設備之輸出電流主要可區分為交流電流與直流電流兩種。本論文的目的在於研製大電流輸出之交直流兩用變頻器,主要針對傳統交直流兩用變頻器的缺點加以改良,以供作驅動氬焊設備之電源供應器。本論文提出兩種變頻器架構,分別為雙電感型變頻器及耦合電感型變頻器,並且分析其基本工作原理。此兩種變頻器皆具有電弧燃燒穩定性佳、輸出電感上無高電壓突波、無需要吸收大能量之緩振電路、高功率輸出時效率佳等優點。在控制電路方面,則以微處理器8051配合積體電路來實現。而在大功率系統中最重要也最容易損壞的電力電子切換元件,則選擇絕緣閘雙極性電晶體(Insulated Gate Bipolar Transistor,IGBT)。最後所實作變頻器之輸出電流規格可達交流100 A、責任週期為50 %、頻率100 Hz。


    Arc welding machines are widely used in the construction and car manufacturing industries. The output current of an arc welding machine can be of AC or DC type, depending on the welding loads. The purpose of this dissertation is to develop a high output current switching power inverter for both AC and DC welding applications and improve the performance of the conventional ones. Two inverter topologies, double-inductor type and coupled-inductor type, are presented and analyzed. Both types have advantages such as excellent arc stability, no high voltage spike across the output inductor, no need of snubber circuits, and higher efficiency during high output power. The 8051 micro-processor incorporated with other logic ICs is adopted to implement the control circuit. In high power applications, the insulated gate bipolar transistors (IGBTs) are often chosen as the switches for their high current capability. Finally, experimental results of the two prototypes are demonstrated. The output AC current can reach the rated 100A level with a frequency of 100 Hz and a duty cycle of 50 %.

    目錄 中文摘要I 英文摘要II 誌謝III 目錄IV 符號索引VII 圖表索引IX 第一章、緒論 1.1研究動機1 1.2研究進行步驟3 1.3全文內容編排方式4 第二章、傳統變頻器架構介紹與分析 2.1前言5 2.2焊接動作原理介紹5 2.3變頻器架構之動作原理7 2.4輸出單電感變頻器架構動作原理8 2.5緩振電路設計17 第三章、新型變頻器架構介紹與分析 3.1前言24 3.2輸出雙電感變頻器架構24 3.3輸出耦合電感變頻器架構34 第四章、補償器分析與回授電路設計 4.1前言42 4.2傳統輸出單電感變頻器之小訊號分析43 4.3輸出雙電感變頻器之小訊號分析48 4.4變頻器回授架構52 4.4.1放大與精密整流電路54 4.4.2回授補償器電路設計55 第五章、實作設計 5.1前言58 5.2微處理器8051與數位邏輯電路實現之控制電路58 5.3開關驅動電路61 5.4電路參數設計65 第六章、實驗波形與模擬 6.1前言68 6.2 Is-Spice電路模擬68 6.3實作之量測波形75 6.3.1控制訊號波形75 6.3.2輸出單電感之變頻器輸出波形76 6.3.3輸出雙電感之變頻器輸出波形78 6.3.4輸出耦合電感之變頻器輸出波形79 6.3.5變頻器電壓突波波形81 6.4變頻器效率84 第七章、結論與未來展望 7.2結論86 7.3未來展望87 參考文獻88

    [1]R. L. O’Brien, Welding Handbook, 8th ed., vol. 2, American Welding Society, Miami, FL, 1991.
    [2]J. Borka, and M. Horvath, “A new, simple, low-cost, modular arrangement of high power factor for both DC and AC welding,” IEEE Proc. ISIE '99, vol. 2, pp. 757-761, July, 1999.
    [3]X. M. Zeng, J. Lucas, Y. Y. Ren, and A. B. Parker, “Welding with high-frequency square-wave AC arcs,” IEE Proc. Science, Measurement and Technology, vol. 137, no. 4, pp. 193−198, July 1990.
    [4]H. Pollock and J. O. Flower, “Series-parallel load-resonant converter for controlled-current arc welding power supply,” IEE Proc. Electrical Power Applications, vol. 143, no. 3, pp. 211−218, May 1996.
    [5]H. S. Mok, S. K. Sul, and M. H. Park, “A load commutated inverter-fed induction motor drive system using a novel DC-side commutation circuit,” IEEE Trans. Ind. Appl., vol. 30, pp. 736-745, May-June, 1994.
    [6]S. J. Jeon. and G. H. Cho, “Zero-voltage and zero-current switching full-bridge DC-DC converter for arc welding machines,” Electronics Letters, vol. 35, no. 13, pp. 1043−1044, June 1999.
    [7]T. F. Wu, H. P. Yang, and C. M. Pan, “Analysis and design of variable frequency and phase-shift controlled series resonant converter applied for electric arc welding machines,” IEEE IECON, pp. 656−661, 1995
    [8]Y. M. Chae, J. S. Gho, G. H. Choe, W. S. Shin, and J. Y. Choi, “PWM converter-inverter arc welding machine using new type N.C.T.,” IEEE PESC, pp. 1636−1641, 1998
    [9]Y. H. Chung and G. H. Cho, “New current source inverters with DC-side commutation and load-side energy recovery circuit,” IEEE Trans. Ind. Applicat., vol. 27, no. 1, pp. 52−62, Jan./Feb, 1991.
    [10]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, 3rd ed, John Wiley&Sons, Inc.
    [11]K. Andersen, G. E. Cook, G. Karsai, and K. Ramaswamy, “Artificial neural networks applied to arc welding process modeling and control,” IEEE Trans. Ind. Applicat., vol. 26, no. 5, pp. 824−830, Sept./Oct. 1990.
    [12]K. Ohshima, M. Yamamoto, T. Tanii, and S. Yamane, “Digital control of torch position and weld pool in MIG welding using image processing device,” IEEE Trans. Ind. Applicat., vol. 28, no. 3, pp. 607−612, May/June 1992.
    [13]Y. Liu, G.. E. Cook, R. J. Barnett, and J. F. Springfield, “PC-based arc ignition and arc length control system for gas tungsten arc welding,” IEEE Trans. Ind. Applicat., vol. 28, no. 5, pp. 1160−1165, Sept./Oct. 1992.
    [14]D. E. Henderson, P. V. Kokotovic, J. L. Schiano, and D. S. Rhode, “Adaptive control of an arc welding process,” IEEE Control Syst. Mag., vol. 13, no. 1, pp. 49−53, Feb. 1993.
    [15]J. B. Bjorgvinsson, G. E. Cook, and K. Andersen, “Microprocessor-based arc voltage control for gas tungsten arc welding using gain scheduling,” IEEE Trans. Ind. Applicat., vol. 29, no. 2, pp. 250−255, March/April 1993.
    [16]D. V. Nishar, J. L. Schiano, W. R. Perkins, and R. A. Weber, “Adaptive control of temperature in arc welding,” IEEE Control Syst. Mag., vol. 14, no. 4, pp. 4−12, Aug. 1994.
    [17]D. E. Destefan, “Calibration and testing facility for resistance welding current monitors,” IEEE Trans. Instrum. Meas., vol. 45, no. 2, pp. 453−456, April 1996.
    [18]Y. M. Zhang, R. Kovacevic, and L. Li, “Adaptive control of full penetration gas tungsten arc welding,” IEEE Control Syst. Mag., vol. 4, no. 4, pp. 394−403, July 1996.
    [19]Y. M. Chae; J. S. Gho; H. S. Mok, G. H. Choe, and W. S Shin, “A new instantaneous output current control method for inverter arc welding machine,” IEEE PESC, pp. 521−526, 1999
    [20]D. J. Leith and W. E. Leithead, “On microprocessor-based arc voltage control for gas tungsten arc welding using gain scheduling,” IEEE Control Syst. Mag., vol. 7, no. 6, pp. 718−723, Nov. 1999.
    [21]J. Tusek, “Experimental investigation of gas tungsten arc welding and comparison with theoretical predictions,” IEEE Trans. Plasma Sci., vol. 28, no. 5, pp. 1688−1693, Oct. 2000.
    [22]Y. M Chae, Y. Jang, M. M. Jovanovic, J. S. Gho, and G. H. Choe, “A novel mixed current and voltage control scheme for inverter arc welding machines,” IEEE APEC, pp. 308−313, 2001
    [23]T. J. Kim, J. P. Lee, H. W. Park, and C. U. Kim, “Development of a power supply for the pulse MIG arc welding with a wire melting rate change,” IEEE PESC, pp. 1−4, 2006
    [24]J. Zhang and B. L. Walcott, “Adaptive interval model control of arc welding process,“ IEEE Trans. Contr. Syst. Technol., vol. 14, no. 6, pp. 1127−1134, Nov. 2006.
    [25]T. L. Vincent, “Waveform control in welding power supplies,” IEEE Control Syst. Mag., vol. 26, no. 4, pp. 17−18, Aug. 2006.
    [26]E. J. Dede, V. Esteve, J. Jordan, J. V. Gonzalez, and E. Maset, “On the design and control strategy of high power, high frequency converters for tube welding applications,” PCC, pp. 257−264, 1993
    [27]E. K. Stava, “High current welding power supply,” U.S. patent 6111216, Aug. 29, 2000.
    [28]J. Q. Huang, S. J. Chen, S. Y. Yin, D. P. Wang, and H. Zeng, “A novel three-phase welding inverter power supply with high power factor,” IEEE ICIT, pp. 1113−1118, 2003
    [29]N. S. Bayindir, O. Kukrer, and M. Yakup, “DSP-based PLL-controlled 50-100 kHz 20 kW high-frequency induction heating system for surface hardening and welding applications,” IEE Proc. Electrical Power Applications, vol. 150, no. 3, pp. 365−371, May 2003.
    [30]E. K. Stava and S. R. Peters, “Tandem electrode welder and method of welding with two electrodes,” U.S. patent 0076333 A1, Apr. 13, 2006.
    [31]P. C. Theron, J. A. Ferreira, J. C. Fetter, and H. W. E. Koertzen, “Welding power supplies using the partial series resonant converter,” IEEE IECON, pp. 1073−1080, 1993
    [32]H. Pollock and J. O. Flower, “Design, simulation and testing of a series resonant converter for pulsed load applications,” Int. Conf. Power Electronics and Variable-Speed Drives, pp. 256−261, 1994
    [33]L. Malesani, P. Mattavelli, L. Rossetto, P. Tenti, W. Marin, and A. Pollmann, “Electric welder with high-frequency resonant inverter,” IEEE Trans. Ind. Applicat., vol. 31, no. 2, pp. 273−279, March/April, 1995.
    [34]J. Stephen Finney, J. Daniel Tooth, John Edward Fletcher, W. Barry Williams, “The application of saturable turn-on snubbers to IGBT bridge-leg circuits". IEEE Trans. Power Electronics, Vol. 14, no. 6, Nov. 1999.
    [35]X. He, B. W. Williams, S. J. Finney, and Qian Z., “New energy recovery snubber configurations for IGBT inverters,” IEEE Proc. Power Electronics and Variable Speed Drives, pp. 54-59, 1996.
    [36]王順忠譯,“電力電子學”,東華書局,2002。
    [37]吳金戊,沈慶陽,郭庭吉,“8051單晶片微電腦實習與應用”,松崗電腦,1995。
    [38]鄧錦城,8051單晶片專題製作,益眾資訊,1993。
    [39]楊明豐,8051單晶片設計實務,碁峯資訊,1998。
    [40]行政院勞工委員會勞工安全衛生研究所,“電焊作業”,2002。
    [41]謝俊明,“不銹鋼電弧焊燻煙暴露危害與評估技術之檢討與建議”,行政院勞工委員會勞工安全衛生研究所,1999。
    [42]H. Dean Venable, “The K-Factor; A New Mathematical Tool for Stability Analysis and Synthesis, “Proceeding of Powercon10, San Diego, CA. March 22-24, 1983.
    [43]MITSUBISHI CM150DY-12H datasheet,http://pdf1.alldatasheet.c
    om/ t-pdf/view/142/MITSUBISHI/CM150DY-12H.html.
    [44]Agilent Technologies HCPL-3120 datasheet,http:// alldatasheet.co
    m/datasheet-pdf/view/82098/HP/HCPL3120.html.

    無法下載圖示 全文公開日期 2012/07/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE