簡易檢索 / 詳目顯示

研究生: 吳柏勳
Po-Xun Wu
論文名稱: RGB-D影像主成份分析之人臉重建與辨識
Face Reconstruction and Recognition using Principal Components in RGB-D Space
指導教授: 徐繼聖
Gee-Sern Hsu
口試委員: 鍾國亮
Kuo-Liang Chung
李明穗
Ming-Sui Lee
周凱支
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 53
中文關鍵詞: 人臉辨識人臉重建RGB-D影像
外文關鍵詞: Face recognition, face reconstruction, RGB-D images.
相關次數: 點閱:629下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不同於大多數的RGB-D人臉辨識,應用RGB-D影像於註冊以及辨識階段。本研究考慮一種情況,只用一組RGB-D的正面影像為註冊影像,而測試影像為具有大角度變化的2D RGB圖像。並且關切了在過去沒有注意到的一個問題,當註冊距離較遠時產生的量測誤差,對此提出一個利用高解析的深度影像為主成份基底,來重建充滿雜訊的人臉深度的方法。在多角度人臉方面利用自動的地標點定位使該重建之三維人臉可生成與辨識圖像做為匹配的特定二維圖像。為了要處理包含眼鏡的人臉樣本,創建了三維眼鏡加入三維人臉模型中,以提升含眼鏡之人臉樣本的辨識率。並且在公開資料庫Biwi Kinect Head Pose Database、Curtin face以及Eurecom Database上測試,顯示出加了深度圖像後能夠大幅度的增加跨角度的辨識性能,並自行蒐集了RGBDFaces database比較不同距離下所拍攝之Kinect 深度資訊以研究量測誤差對人臉辨識的影響。
    I


    Different from most RGB-D face recognition with RGB-D images available in both registration and recognition phases, this study considers RGB-D images only at the registration phase and the recognition is performed on RGB images. The quantization noise, often encountered when the subject is not close enough to the camera at registration, has not attracted much attention in the past, but is discussed and resolved by a proposed approach. The proposed approach exploits the principal components extracted from high resolution depth data as the basis for the reconstruction of the noise-corrupted facial depth. To deal with faces with eyeglasses, a reference facial model with eyeglasses is considered in the reconstruction. The performance of the proposed approach is evaluated on three public databases and the RGBDFaces that we made for studying the impacts of quantization noises.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 演算法目錄 第一章 緒論 1.1 動機與目的 1.2 方法概述 1.3 論文貢獻 1.4 論文架構 第二章 相關文獻探討 2.1 RGB-D Database 2.1.1 CurtinFaces Database 2.1.2 Biwi Kinect Head Pose Database 2.1.3 RGBDFaces Database 2.1.4 Eurecom database 2.1.5 FRGC介紹 2.2 基於RGB-D影像的三維人臉重建 2.2.1 RGB-D based Face Reconstruction and Recognition 2.2.2 Using kinect for face recognition under varying poses, expressions, illumination and disguise 2.2.3 Automatic Reconstruction of Personalized Avatars from 3D Face Scans 2.3 辨識及評估三維人臉重建效果 2.3.1 Fully Automatic Pose-Invariant Face Recognition via 3D Pose Normalization 2.3.2 Face Recognition Robust to Head Pose Changes Based on the RGB-D Sensor 2.3.3 Eyeglasses Eigen face Based Glasses-face Recognition 第三章 基於RGB-D影像的三維人臉重建 3.1 含量測誤差之深度圖重建 3.1.1 利用FRGC高精度人臉以PCA重建Kinect深度訊息 3.2 重建包含眼鏡的三維人臉樣本 第四章 辨識及評估三維人臉重建效果 4.1 以3D人臉模型產生特定角度的圖像 4.1.1角度不變的辨識經由三維人臉的正規化 4.1.2 Landmark-assisted 3D人臉產生多角度的辨識圖像 4.2 以SRC為基礎辨識多角度人臉 4.2.1 光源正規化 4.2.2 特徵擷取 4.2.3 以SRC為基礎的分類器 第五章 實驗結果與討論 5.1 樣本之規格 5.2 多角度人臉辨識之實驗設置 5.3.1 參考模型與Kinect深度訊息重建差異 5.3.2 加入局部特徵之辨識 5.3.3 加入3D眼鏡之辨識 5.3.4 不同量測距離的辨識 5.3.5 將樣本放大後增加解析度之重建 5.3 實驗結果與分析 第六章 實際系統製作 6.1 系統平台 6.2 系統流程 6.3 系統呈現 第七章 結論與未來研究方向 參考文獻 附錄1 各資料庫包含眼鏡樣本清單

    [1] Hsu, G.-S.J.; Yu-Lun Liu; Hsiao-Chia Peng; Po-Xun Wu, "RGB-D-Based Face Reconstruction and Recognition," Information Forensics and Security, IEEE Transactions on , vol.9, no.12, pp.2110,2118, Dec. 2014
    [2] B. Y. Li, A. S. Mian, W. Liu, and A. Krishna, “Using kinect for face recognition under varying poses, expressions, illumination and disguise,” in Applications of Computer Vision (WACV), 2013 IEEE Workshop on. IEEE, 2013, pp. 186–192.
    [3] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE Trans. on Pattern Anal. and Machine Intel., 14(2):239–256, 1992. 2, 3
    [4] Rui Min, Neslihan Kose, Jean-Luc Dugelay, "KinectFaceDB: A Kinect Database for Face Recognition," Systems, Man, and Cybernetics: Systems, IEEE Transactions on , vol.44, no.11, pp.1534,1548, Nov. 2014.
    [5] U.Prabhu, J. Heo, and M. Savvides, “Unconstrained pose-invariant face recognition using 3d generic elastic models,” TPAMI, vol. 33, pp. 1952– 1961, 2011.
    [6] X. Zhang and Y. Gao, “Heterogeneous specular and diffuse 3-D surface approximation for face recognition across pose,” IEEE Trans. Inf. Forensics and Security, vol. 7, no. 2, pp. 1952–1961, 2012.
    [7] X. Zhu and D. Ramanan, “Face detection, pose estimation, and landmark localization in the wild,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 2879–2886.
    [8] Zollhofer, M.; Martinek, M.; Greiner, G.; Stamminger, M.; Suasmuth, J. Automatic reconstruction of personalized avatars from 3D face scans. Comput. Animat. Virtual Worlds 2011, 22, 195–202.
    [9] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, pp. 210–227, 2009.
    [10] A. Y. Yang, S. S. Sastry, A. Ganesh, and Y. Ma, “Fast l1-minimization algorithms and an application in robust face recognition: A review,” in ICIP, 2010, pp. 1849–1852.
    [11] C. Ciaccio, L. Wen, and G. Guo, “Face recognition robust to head pose changes based on the rgb-d sensor,” in Biometrics: Theory, Applications and Systems (BTAS), IEEE Intl Conf. on. IEEE, 2013, pp. 1–6.
    [12] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. Van Gool, “Random forests for real time 3d face analysis,” International Journal of Computer Vision, vol. 101, no. 3, pp. 437–458, 2013.
    [13] T. Huynh, R. Min, and J.-L. Dugelay, “An efficient lbp-based descriptor for facial depth images applied to gender recognition using rgb-d face data,” in Computer Vision-ACCV 2012 Workshops. Springer, 2013, pp.133–145.
    [14] W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang. “ Local gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition”. TEEE TCCV, 2005
    [15] Asthana, Akshay, et al. "Fully automatic pose-invariant face recognition via 3d pose normalization." Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011.
    [16] V. Blanz and T. Vetter. “ A morphable model for the synthesis of 3D faces, ” In SIGGRAPH. 1999. 3,4,6,7
    [17] G. Edwards, C. Taylor, and T. Cootes. “ Interpreting Face Images Using Active Appearance Models, ” In FG 1998. 2,4
    [18] Song, Caifang, Baocai Yin, and Yanfeng Sun. "Eyeglasses Eigenface Based Glasses-face Recognition." Networking, Sensing and Control, 2008. ICNSC 2008. IEEE International Conference on. IEEE, 2008.
    [19] G. Goswami, S. Bharadwaj, M. Vatsa, and R. Singh, “On rgb-d face recognition sing kinect,” in Biometrics: Theory, Applications and Systems (BTAS), IEEE Intl Conf. on. IEEE, 2013, pp. 1–6.
    [20] P. Phillips, P. Flynn, T. Scruggs, K. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, and W. Worek, “Overview of the face recognition grand challenge,” CVPR, vol. 1, pp. 947–954, June 2005.
    [21] A. J. K. Bonnen, B.F. Klare, ``Component-based representation in automated face recognition,'' Information Forensics and Security, IEEE Trans. on, vol. 8, p. 239–253, Jan. 2013
    [22] J. Zou, Q. Ji, and G. Nagy, ``A comparative study of local matching approach for face recognition about,'' Image Processing, IEEE Trans. on, vol. 16, p. 2617–2628, Oct. 2007.
    [23] X. Tan and B. Triggs, ``Enhanced local texture feature sets for face recognition under difficult lighting conditions,'' Image Processing, IEEE Trans. on, vol. 19, p. 1635–1650, June 2010.

    QR CODE