簡易檢索 / 詳目顯示

研究生: 劉家樺
Jia-Hua Liu
論文名稱: 一個基於隨機森林的自動化美學照片構圖分類系統
An Automatic Aesthetic Photo Composition Classification System Based on a Random Forest
指導教授: 范欽雄
Chin-Shyurng Fahn
口試委員: 戴碧如
Bi-Ru Dai
林啟芳
Chi-Fang Lin
王榮華
Jung-Hua Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 53
中文關鍵詞: 攝影構圖霍夫轉換顯著圖隨機森林分類器
外文關鍵詞: Photographic Composition, Hough Transform, Saliency Region, Random Forest Classifier
相關次數: 點閱:288下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,由於數位相機與智慧型手機相機的普及,使得拍照越來越簡單,照片的數量也大量的增加。而社交網路的盛行,讓使用者們大量上傳照片到社交網路上分享生活。照片是拍照者用來記錄當下看到感動的事物,照片可以傳遞拍照者的情感,但是照片通常還必須透過照片構圖的畫面規劃來傳遞所需要表達的特定資訊,照片所要強調的主體位置會影像一張照片給人的感覺,這就是照片構圖的意義所在,所以照片構圖為拍照的一個重要元素。儘管照片構圖在專業的、優秀的攝影作品中為一個重要因素,目前有關照片構圖分類的研究並未有深入的研究。
在本篇論文中,我們運用了基於隨機森林的分類系統來辨認所要處理的照片構圖,在將構圖分類之前,我們使用不同的方法將可以影響照片構圖分類的特徵擷取出來,例如霍夫轉換中線的偵測、影像中顯著區域偵測等。萃取出來的特徵被當成輸入的參數來進行下一步的分類。
實驗的部份針對不同的攝影構圖類型進行分析。本文提出的方法可以有效地對影像的照片構圖類型進行分類,召回率達86.1%以及精確率達86.2%。


Nowadays, due to the popularity of digital camera and smart phone camera, it’s getting easier to take photos, and the number of photos are explosively increasing. With the widespread of social network, it lets users upload enormous photos onto the platforms to share their life. Photos are to record things that touch people instantly, and deliver the emotion of people who take photos. But in most cases, images must tell some specific information through some terms of image arrangement. This is the main idea of photographic composition. Despite its important factor in photography, there still remains a lot of space to improve in this research.
In this paper, we will propose a system based on random forest that can recognize what kinds of composition is the photography. Before categorizing composition, we extract the features which have a big impact on the composition of photo in many different ways. For example, using hough transform to detect lines and finding saliency region in an image. Then extracting several features as inputs to encounter the next step of categorizing.
In the experiment stage, we analyze different kinds of composition. The method we propose can accurately categorize every kind of photographic compositions and the recall is 86.1% and the precision is 86.2%.

中文摘要 i Abstract ii 致謝 iii Table of Contents iv List of Figures vi List of Tables ix Chapter 1 Introduction 1 1.1 Overview 1 1.2 Motivation 2 1.3 Types of Photographic Compositions 3 1.3.1 Sun-like Composition 3 1.3.2 Rule of Thirds Composition 4 1.3.3 Horizontal Line Composition 4 1.3.4 Vertical Line Composition 5 1.3.5 Diagonal Line Composition 6 1.3.6 Symmetry Composition 6 1.3.7 Perspective Composition 7 1.3.8 Triangular Composition 8 1.4 System Description 8 1.5 Thesis organization 9 Chapter 2 Related Work 10 2.1 Reviews of Photo Composition 10 Chapter 3 Feature Extraction 15 3.1 Salient Region Detection for Location of Main Object 15 3.1.1 Salient Region Detection 15 3.1.2 Distance of Image Center and Centroid of Saliency Region 17 3.1.3 Distance of Power Points in Image and Centroid of Saliency Region 18 3.1.4 The Ratio of Saliency Region 19 3.2 Line Detection 19 3.2.1 The Ratio of Horizontal, Vertical, and Diagonal Lines 19 3.2.2 The Ratio of Non-horizontal, Non-vertical and Non-diagonal Lines 22 3.2.3 Triangle Detection 22 3.3 Feature Matching for Symmetry Detection 24 3.3.1 ORB Method to Detect Symmetry 24 3.4 Other Features 26 3.4.1 Local Linearity 27 3.4.2 Sharpness 28 Chapter 4 Photo Composition Classifier 29 4.1 Basic Concept of Random Forest 29 4.2 Decision Tree 30 4.3 Bagging 31 4.4 Classifier 32 Chapter 5 Experimental Results and Discussions 33 5.1 Experimental Setup 33 5.2 The Result of Random Forest Classification 35 5.3 Comparison of other classification methods 47 Chapter 6 Conclusions and Future Work 50 6.1 Conclusions 50 6.2 Future Work 50 References 51

“Instagram Company Statisc,” [Online]. Available: http://www.statisticbrain.com/instagram-company-statistics/. (accessed on June 23, 2017)
C. L. Wen and T. L. Chia, “The fuzzy approach for classification of the photo composition,” International Conference on Machine Learning and Cybernetics, pp. 1447-1453, July 2012.
G. Klir and B. Yuan, “Fuzzy sets and fuzzy logic,” Vol. 4. New Jersey: Prentice hall, 1995.
L. Mai, H. Le, Y. Niu, and F. Liu, “Rule of Thirds Detection from Photograph,” IEEE International Symposium on Multimedia, USA, pp. 91-96, Dec 2011.
L. Bai, X. Wang, and Y. Chen, “Landscape Image Composition Analysis Based on Image Processing,” IEEE International Conference on Computer Science and Automation Engineering, China, Vol. 2, pp. 787-790, May 2012.
Y. T. Lin, “A Photo Composition Classification System Based on Supervised Learning,” M.S. thesis, Dept. Information. Eng., National Taiwan University of Science and Technology, Taipei, Taiwan, 2014.
E. Rublee, V. Rabaud, K. Konolige and G. Bradski, “ORB: An Efficient Alternative to SIFT or SURF,” IEEE International Conference on Computer Vision, Spain, pp. 2564-2571, Nov 2011.
M. M. Cheng, G. X. Zhang, N. J. Mitra, X. Huang and S. M. Hu, “Global Contrast Based Salient Region Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 37, No. 3, pp. 569-582, Aug 2014.
N. Otsu, “A Threshold Selection Method from Gray-level Histograms,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 9, No. 1, pp. 62-66, Jan 1979.
S. Suzuki, “Topological Structural Analysis of Digitized Binary Images by Border Following,” Computer Vision, Graphics, and Image Processing, Vol. 30, No. 1, pp. 32-46, Apr 1985.
E. Rosten and T. Drummond, “Machine Learning for High-speed Corner Detection,” European Conference on Computer Vision, Austria, Vol. 1, pp. 430-443, May 2006.
M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary Robust Independent Elementary Features,” European Conference on Computer Vision, Greece, pp. 778-792, Sep 2010.
L. Breiman, “Random forests,” Machine learning, Vol. 45, No. 1, pp. 5-32, Oct 2001.
J. R. Quinlan, “Induction of Decision Trees,” Machine Learning, Vol. 1, No. 1, pp. 81-106, Mar 1986.
“flickr,” [Online]. Available: http://www.flickr.com/. (accessed on June 23, 2017)
“dpchallenge,” [Online]. Available: http://www.dpchallenge.com/. (accessed on June 23, 2017)
L. Breiman, "Bagging Predictors," Machine Learning, Vol. 24, No. 2, pp. 123-140, Aug 1996.
M. W. Gardner and S. R. Dorling, “Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences,” Atmospheric environment, Vol. 32, No. 14, pp. 2627-2636, Aug 1998.
C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, Vol. 20, No. 3, pp. 273-297, Sep 1995.

無法下載圖示 全文公開日期 2022/08/11 (校內網路)
全文公開日期 2027/08/11 (校外網路)
全文公開日期 2027/08/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE