簡易檢索 / 詳目顯示

研究生: 吳毅洵
Yi-hsun Wu
論文名稱: 使用中孔型Cu/AlPO4觸媒於酚的合成
Phenol synthesis using mesoporous Cu/AlPO4 catalysts
指導教授: 劉端祺
Tuan-Chi Liu
口試委員: 蕭敬業
Ching-Yeh Shiau
劉尚斌
Liu, Shang-Bin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 80
中文關鍵詞: 氧化磷酸鋁過氧化氫中孔
外文關鍵詞: benzene, hydroxylation, hydrogen peroxide, aluminophosphate, mesoporous, phenol
相關次數: 點閱:487下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究嘗試將銅負載於不同形式的磷酸鋁(AlPO4) 載體,並測試其將過氧化氫與苯氧化為酚的活性,並與含銅之SBA-15 及微孔AlPO4 比較。觸媒載體由下列幾種方法製備,在SBA-15 中孔分子篩表面塗佈磷酸鋁(命名為Cx-AlPO4/SBA);利用SBA-15 空間限制合成磷酸鋁(命名為Sx-AlPO4/SBA) 以及直接合成中孔磷酸鋁(命名為mesoAlPO4),所有樣品皆以含浸法負載1 wt% 的銅。
所合成的觸媒以X-光繞射光譜(XRD)、氣體吸附儀(BET)、場發射穿透式電子顯微鏡(TEM)、氨氣程式升溫脫附裝置(NH3-TPD)、固態27Al魔角旋轉(MAS) 核磁共振儀(NMR) 及固態31P (MAS) NMR 鑑定其性質。所有以SBA-15 合成的觸媒載體均具有AlPO4 結構,觸媒的酸量以Sx-Cu/AlPO4/SBA 最高,同時高於Cx-Cu/AlPO4/SBA 及含量相近之Cu/mesoAlPO4。
觸媒的酚合成活性在液相中測試,以苯及過氧化氫為原料,乙腈為溶劑,乙腈主要目的是使其為均相反應,反應在60℃ 及1 atm 下進行,反應後的產物以氣相層析儀分析。實驗結果發現,各觸媒中以在SBA-15 塗佈兩次磷酸鋁為載體者活性最佳,且高於塗佈一次者,觸媒活性高低順序分別為:C2-Cu/AlPO4/SBA > Cu/mesoAlPO4 > C1-Cu/AlPO4/SBA >> Cu/AlPO4  Sx-Cu/AlPO4/SBA >> Cu/SBA-15。觸媒的壽命則以中孔磷酸鋁為載體者最佳,以在SBA-15 塗佈磷酸鋁為載體者次之,以空間限制法合成之磷酸鋁為載體者最差。與失活常數結果一致,本實驗指出其活性在於觸媒載體之磷酸鋁上的銅,不在於酸量。


The catalytic performances of various copper (Cu) supported on modified aluminophosphate (AlPO4) substrates during hydroxylation of benzene to phenol have been investigated. Modified catalyst supports prepared by different methods, namely by coating AlPO4 onto the surfaces of the mesoporous SBA-15 molecular sieve (denoted as Cx-AlPO4/SBA), by incorporating AlPO4 in the pore channels of SBA-15 (denoted as Sx-AlPO4/SBA), or by direct synthesis of mesoporous AlPO4 (denoted as mesoAlPO4) have been examined together with bare SBA-15 and traditional microporous AlPO4 (microAlPO4). Subsequently, ca. 1 wt% of Cu was loaded onto the respective supports by the impregnation method.
The physicochemical properties of various supported catalysts were characterized by a variety of analytical and spectroscopic techniques, viz. XRD, BET, TEM, NH3-TPD, and 27Al and 31P MAS NMR. The structures of AlPO4 as well as the SBA-15 were found to remain intact in the modified catalysts regardless of the methods invoked for the preparation of various catalyst supports. In terms of acid concentrations, the following trend was observed: Sx-Cu/AlPO4/SBA >> Cx-Cu/AlPO4/SBA  Cu/mesoAlPO4.
The catalytic activities of various catalysts for the production of phenol were tested under liquid phase using benzene and hydrogen peroxide as the reactants and acetonitrile as the solvent. The latter was introduced to warrant a homogeneous mixture of the reactants. Typically, the reaction was conducted at 60℃ under ambient pressure, and the products were analyzed by a gas chromatography equipped with a flame ionization detector (GC-FID). It was found that the catalyst prepared by duplicated AlPO4 coating (C2-Cu/AlPO4/SBA) exhibited a better activity than the catalyst support coated only once (C1-Cu/AlPO4/SBA). Moreover, the catalytic activities of various supported catalysts follow the following trend: C2-Cu/AlPO4/SBA > Cu/mesoAlPO4 > C1-Cu/AlPO4/SBA >> Cu/AlPO4  Sx-Cu/AlPO4/SBA >> Cu/SBA-15. Additional life tests revealed that the durability/stability of the modified catalysts followed the trend: Cu/mesoAlPO4 > Cx-Cu/AlPO4/SBA > Sx-Cu/AlPO4/SBA, which is in agreement with the observed trend in their respective deactivation constants. Thus, it is indicative that the activity of the supported Cu catalysts should be associated with the structures of the AlPO4-modified substrates rather than their acid concentrations.

摘要 I ABSTRACT III 誌謝 V 目錄 VI 表目錄 X 圖目錄 XI 第一章 緒論 1 第二章 文獻回顧 3 2.1 酚 3 2.1.1 酚的用途 3 2.1.2 酚的合成方法 5 2.2 苯直接催化氧化製酚 10 2.3 SBA-15 簡介 14 2.4 磷酸鋁分子篩介紹 16 2.5 不同的含銅磷酸鋁觸媒的製備 18 2.5.1 表面塗佈法製備磷酸鋁載體 18 2.5.2 空間限制法製備磷酸鋁載體 19 2.5.3 直接合成法製備中孔磷酸鋁載體 20 第三章 實驗 21 3.1實驗氣體、藥品與儀器設備 21 3.1.1實驗氣體 21 3.1.2實驗藥品 22 3.1.3實驗儀器設備 24 3.2觸媒的製備 25 3.2.1製備中孔洞材料SBA-15 25 3.2.2 製備磷酸鋁母液 (AlPO4 前驅物) 26 3.2.3 表面塗佈法製備磷酸鋁載體 (Cx-AlPO4/SBA) 26 3.2.4 空間限制法製備磷酸鋁載體 (Sx-AlPO4/SBA) 27 3.2.5 直接合成中孔磷酸鋁載體 (mesoAlPO4) 27 3.2.6 以含浸法負載銅金屬 27 3.3以雙氧水氧化製酚的反應 28 3.3.1 液相反應裝置 28 3.3.2 分析方法與儀器 29 3.4 觸媒鑑定 30 3.4.1 粉末X光繞射 (Powdered X-ray Diffraction;PXRD) 30 3.4.2氣體吸附儀 (BET) 31 3.4.3 穿透式電子顯微鏡(Transmission Electron Microscopy;TEM) 37 3.4.4程溫脫附實驗 (TPD) 39 3.4.5 固態核磁共振光譜儀(Solid-state NMR) 41 3.4.5-1 固態27Al魔角旋轉(MAS) NMR 實驗 45 3.4.5-2 固態31P魔角旋轉(MAS) NMR 實驗 45 第四章 結果與討論 46 4.1 觸媒的鑑定 47 4.1.1 粉末X 光繞射 47 4.1.2 氣體物理吸附 (BET) 50 4.1.3 場發射穿透式電子顯微鏡 (TEM) 56 4.1.4. 氨氣程溫脫附實驗 (NH3-TPD) 59 4.1.5 固態核磁共振光譜 (MAS NMR) 62 4.1.5-1 固態27Al 魔角旋轉(MAS) NMR 62 4.1.5-2 固態31P 魔角旋轉(MAS) NMR 64 4.2 苯製酚的液相反應 66 4.2.1 溶液組成的效應 66 4.2.2 觸媒製備方法的效應 67 第五章 結論 73 第六章 參考文獻 75 表目錄 表3.1.1 實驗氣體 21 表3.1.2實驗藥品 22 表3.1.3實驗儀器設備 24 表 3.2.5-1 觸媒命名簡表 28 表 4-1 觸媒命名及介紹 46 表 4.1-1 各觸媒之物理性質一覽表 55 表 4.1.5-1 27AL (MAS) NMR 面積比 (四配位/六配位) 64 表 4.2.1-1 觸媒的活性係數 71 表 4.2.1-2 觸媒的失活速率常數 72 圖目錄 圖 2.2-1 CU(I)/O2/H2SO4 苯催化反應反應機制 12 圖 2.3-1 SBA-15 之合成示意圖(A)界面活性劑(B)微胞(C)六角結構 15 圖 2.4-1 ALPO4-5的結構 17 圖 3.2.1 SBA-15 合成流程圖 25 圖 3.4.1 X光於晶面的繞射 31 圖 3.4.2-1 孔洞與接觸角 33 圖 3.4.2-2 (A) TYPES OF PHYSISORPTION ; (B) TYPES OF HYSTERESIS LOOP 34 圖 3.4.2-3 表面積與孔洞測量儀(AUTOSORB-1) 37 圖 3.4.3-1 電子與光學顯微鏡差異示意圖 38 圖 3.4.4-1 程溫脫附實驗裝置圖 40 圖 3.4.4-2 TPD–NH3 實驗溫度示意圖 41 圖 3.4.5-1 魔角旋轉NMR磁場與樣品的相對位置圖 44 圖 4.1-1 各觸媒之高角度XRD 繞射圖 47 圖 4.1-2 觸媒之低角度XRD 繞射圖 49 圖 4.1-3 各觸媒的氮氣吸附/脫附等溫曲線圖 51 圖 4.1-4 孔徑分佈圖 53 圖 4.1-5 SBA-15 之TEM 影像 57 圖 4.1-6 C1-CU/ALPO4/SBA 之TEM 影像 57 圖 4.1-7 C2-CU/ALPO4/SBA 之TEM 影像 57 圖 4.1-8 S1-CU/ALPO4/SBA 之TEM 影像 58 圖 4.1-9 S2-CU/ALPO4/SBA 之TEM 影像 58 圖 4.1-10 CU/MESOALPO4 之TEM 影像 58 圖 4.1-11 C1-CU/ALPO4/SBA、C2-CU/ALPO4/SBA 觸媒與SBA-15 之NH3-TPD 脫附圖 60 圖 4.1-12 S1-CU/ALPO4/SBA、S2-CU/ALPO4/SBA 觸媒與SBA-15 之NH3-TPD 脫附圖 60 圖 4.1-13 C2-CU/ALPO4/SBA、S1-CU/ALPO4/SBA 與CU/MESOALPO4 觸媒之NH3-TPD 脫附圖 61 圖 4.1-14 固態27AL 魔角旋轉(MAS) NMR 63 圖 4.1-15. 固態31P 魔角旋轉(MAS) NMR 65 圖 4.2-1 表面塗佈合成載體後製備觸媒之酚合成活性圖 67 圖 4.2-2 空間限制法合成載體後製備觸媒之酚合成活性圖 68 圖 4.2-3 不同觸媒之反應活性 69 圖 4.2-4 觸媒活性係數對時間的關係圖 71

[1] Bal R., Tada, Sasaki T., Iwasawa, Y., “Direct phenol synthesis by selective oxidation of benzene with molecular oxygen on an interstitial-N/Re cluster/zeolite catalyst, “Angew. Chem. Int. Ed., 45(3), 448-452 (2006).

[2] Piryutko, L.V., Parenago, O.O., Lunina, E.V., Kharitonov, A.S., Okkel, L.G., Panov, G.I., “Silylation effect on the catalytic properties of FeZSM-11 in benzene oxidation to phenol, “ React. Kinet., Catal. Lett., 52, 275-283 (1994).

[3] Shuangfeng, Y., Shuisheng, W., Weili, D., Wensheng, L., Mengguang, H., Xiaoping, Z., “Direct phenol synthesis by catalytic oxidation of benzene with molecular oxygen“, Progress in Chem., 19, 735-744 (2007).

[4] Panov, G.I., Kharitonov, A.S., Sobolev, V.I., “Oxidative hydroxylation using dinitrogen monoxide: A possible route for organic synthesis over zeolites”, Appl. Catal. A, Gen., 98, 1-20 (1993).

[5] Iwamoto, M., Hirata, J.I., Matsukami, K., Kagawa, S., “Catalytic oxidation by oxide radical ions. 1. One-step hydroxylation of benzene to phenol over group 5 and 6 oxides supported on silica gel”, Phys. Chem., 87 903-905 (1983).

[6] Liptáková, B., Báhidský, M., Hronec, M., “Preparation of phenol from benzene by One-step reaction”, Appl. Catal. A:Gen., 263, 33-38 (2004).

[7] Hiemer, U., Klemm, E., Scheffler, F., Selvam, T., Schwieger, W., Emig, G., “Microreaction engineering studies of the hydroxylation of benzene with nitrous oxide”, Chem. Eng. J., 101, 17-22 (2004).

[8] Li, L., Shi, J.L., Yan, J.N., Zhao, X.G., Chen, H.G., “Mesoporous SBA-15 material functionalized with ferrocene group and its use as heterogeneous catalyst for benzene hydroxylation ”, Appl. Catal. A: Gen., 263, 213-217 (2004).

[9] Choi, J.S., Kim, T.H., Choo, K.Y., Sung, J.S., Saidutta, M.B., Song, S.D., Rhee, Y.W., “Transition metals supported on activated carbon as benzene hydroxylation catalysts”, J. Porous Mat., 12, 301-310 (2005).

[10] Parida, K.M., Dash, S.S., “Surface characterization and catalytic evaluation of manganese nodule leached residue toward oxidation of benzene to phenol ”, J. Colloid Interf. Sci., 316, 541-546 (2007).

[11] Kunai, A., Hata, S., Ito, S., Sasaki, K., ”Mechanistic study of air oxidation of benzene in sulfuric acid catalyzed by cuprous ions “, J. Org. Chem., 51, 3471-3474 (1986).

[12] Sakata, S.I., Nakai, T., Yahiro, H., Shiotani, M., ”An ESR study on reduction-oxidation properties of copper ions in Cu-Pd-H3PO4/SiO2 catalyst active in direct oxidation of benzene“, Appl. Catal. A: Gen., 165, 467-472 (1997).

[13] Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D., ”Nonionic triblock and star diblock copolymer and oligomeric sufactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures“, J. Am Chem. Soc., 120, 6024-6036 (1998).

[14] Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S., “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism“, Nature, 359, 710-712 (1992).

[15] Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson D. H., Sheppard E. W., McCullen S. B., Higgins J.B.,, Schlenker, J.L., “A new family of mesoporous molecular sieves prepared with liquid crystal templates “, J. Am Chem. Soc., 114, 10834-10843 (1992).

[16] Zuna, R., ”Micellization of amphiphiles: Selected aspects”, Colloids Surf., 123-124, 27-35 (1997).

[17] Chen, C.Y., Li, H.X., Davis, M.E., “Studies on mesoporous materials. I. Synthesis and characterization of MCM-41 “Microporous matels, 2, 17-26 (1993).

[18] Yang, C.M., Zibrowius, B., Schmidt, W., Schüth, F., “Consecutive generation of mesopores and micropores in SBA-15 “, Chem. Mater., 15, 3739-3741 (2003).

[19] Chang, C.D., Lang, W.H., Silvestri, A.J., ” Synthesis gas conversion to aromatic hydrocarbons“, J. Catal., 56, 268-273 (1979).

[20] Chang, C.D., Lang, W.H., Smith, R.L.,”The conversion of methanol and other o-compounds to hydrocarbons over zeolite catalysts. II. Pressure effects“ J. Catal., 56, 169-173 (1979).

[21] Fujimoto, K., Asami, K., Saima, H., Shikada, T., Tominaga, H.O., ”Two-stage reaction system for synthesis gas conversion to gasoline“, Ind. Eng. Chem. Prod. Res. Dev., 25, 262-267 (1986).

[22] Fujimoto, K., Saima, H., Tominaga, H.O., “Synthesis gas conversion utilizing mixed catalyst composed of CO reducing catalyst and solid acid. IV. Selective synthesis of C2, C3, and C4 paraffins from synthesis gas“, J. Catal., 94, 16-23 (1985).

[23] Wilson, S.T., Lok, B.M., Messina, C.A., Cannan, T.R., Flanigen, E.M., “Aluminophosphate molecular sieves: A new class of microporous crystalline inorganic solids”, J. Am. Chem. Soc. 104, 1146-1147 (1982).

[24] Wilson, S.T., Lok B.M., Flanigen E.M., “Crystalline metallophosphate compositions”, U.S. Patent 4, 310, 440 (1982).

[25] Bennent, J.M., Cohen J.P., Flanigen E.M., Pluth J.J., Smith J.V., “Crystal structure of tetrapropylammonium hydroxide-aluminum phosphate Number 5”, ACS. Symp. Ser., 218, 109 (1983).

[26] 吳孝忠,「磷酸鋁分子篩表面酸性的研究」,國立中央大學,化學工程研究所,碩士論文,民國86年。

[27] Wilson, S.T., Flanigen E.M., “Crystalline metal aluminophosphate”, U.S. Patent 4, 567, 029 (1986).

[28] Flanigen, E.M., Lok, B.M., Patton, R.L., Wilson, S., ”Aluminophosphate molecular sieves and the periodic table”, Pure Appl. Chem. 58, 1351-1358 (1986).

[29] Atlas of Zeolite Structure Types, Zeolites, 17, 27 (1996).

[30] Margolese, D., Melero, J.A., Christiansen, S.C., Chmelka, B.F., Stucky, G.D., “Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups“, Chem. Mater. 12, 2448-1459 (2000).

[31] Walcarius, A., Etienne, M., Lebeau, B., “Rate of access to the binding sites in organically modified silicates. 2. Ordered mesoporous silicas grafted with amine or thiol groups“, Chem. Mater. 15, 2161-2173 (2003).

[32] Yokoi, T., Yoshitake, H., Tatsumi, T., ”Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino- organoalkoxysilanes”, J. Mater. Chem.14, 951-957 (2004).

[33] Liao, X., Zhou, Z., Wang, Z., Zou, X., Liu, G., Jia, M., Zhang, W., ” Preformed precursor of microporous aluminophosphate coating on mesoporous SBA-15: Synthesis, characterization, and catalytic property for selective o-methylation of catechol“, J. Colloid Interf. Sci., 308, 176-181 (2006).

[34] Schmidt, I., Madsen, C., Jacobsen, C.J.H., “Confined space synthesis. A novel route to nanosized zeolites”, Inorg. Chem., 39, 2279-2283 (2000).

[35] Tiemann, M., Schulz, M., Jäger, C., Fröba, M., “Mesoporous aluminophosphate molecular sieves synthesized under nonaqueous conditions”, Chem. Mater., 13, 2885-2891 ( 2001).

[36] Kimura, T., Sugahara, Y., Kuroda, K., “Synthesis and characterization of lamellar and hexagonal mesostructured aluminophosphates using alkyltrimethylammonium cations as structure-directing agents”, Chem. Mater., 11, 508-518 (1999).

[37] Wang, L., Tian, B., Fan, J., Liu, X., Yang, H., Yu, C., Tu, B., Zhao, D., “Block copolymer templating syntheses of ordered large-pore stable mesoporous aluminophosphates and Fe-aluminophosphate based on an ‘‘acid–base pair’’ route”, Microporous and Mesoporous Materials, 67, 123–133 (2004).

[38] Atkin P.W., in “Physical chemistry sixth edition“, Oxford University Press, Chapter 28 (1998).

[39] Sing, K.S.W., Everett, D.H., Haul, R.A.W., Koscou, L., Pierotti R.A., 57, No.4,.603-619 (1985).

[40] Mehring, M. in “High Resolution NMR of Solids”, Springer-Verlag, Berlin (1983).

[41] Ernst, R.R., Bodenhausen, G., Wokann, A. in Principle of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon : Oxford (1987).

[42] Blum, K., in “Density Matrix Theory and Applications”, Plenum: New York (1981).

[43] Medek, A., Harwood, J.S., Frydman, L., “Multiple-quantum magic-angle spinning NMR: A new method for the study of quadrupolar nuclei in solids“, J. Am. Chem. Soc., 117, 12779-12787 (1995).

[44] Jacobs, W.P.J.H., De Haan, J.W., Van De Ven, L.J.M., Van Santen, R.A., “Interaction of NH3 with Brønsted acid sites in different cages of zeolite Y as studied by 1H MAS NMR “, J. Phys. Chem., 97, 10394-10402 (1993).

[45] (a) Alemany, L.B., Kirker, C.W., ”First observation of 5-coordinate aluminum by MAS 27 Al NMR in well-characterized solids “, J. Am. Chem. Soc., 108, 6158-6162 (1986).;(b) Gilson, J.-P., Edwards, G.C., Peters, A.W., Rajagopalan, K., Wormsbecher, R.F., Roberie, T.G., Shatlock, M.P., ”Penta-co-ordinated aluminium in zeolites and aluminosilicates”, J. Chem. Soc.Chem. Commun., 91-92 (1987).

[46] Samoson, A., Lippmaa, E., Engelhardt, G., Lohse, U., Jerschkewitz, H.-G., “Quantitative high-resolution 27Al NMR: tetrahedral non-framework aluminium in hydrothermally treated zeolites “, Chem. Phys. Lett., 134, 589-592 (1987).

[47] Lin, K., Wang, L., Sun, Z., Yang, Q., Di, Y., Zhang, D., Jiang, D., Xiao, F.-S., “A stable hexagonal mesoporous aluminophosphate assembled from preformed aluminophosphate precursors ” , Chem. Lett., 34 ,4, 516-517 (2005).

[48] 徐聖揚,「苯與過氧化氫氧化製酚的研究」, 國立臺灣科技大學,化學工程研究所,碩士論文,民國98年。

[49] 周慧英,「含銅磷酸鋁分子篩之催化活性探討」,國立台灣大學,化學研究所,碩士論文,民國87年。

QR CODE