簡易檢索 / 詳目顯示

研究生: 宋欣芳
Hsin-Fang Sung
論文名稱: 低矮型鋼筋混凝土建築物震後耐震性能評估方法之研究
Study on Post-earthquake Seismic Assessment Method for Low-rise RC buildings
指導教授: 邱建國
Chien-Kuo Chiu
口試委員: 黃世建
Shyh-Jiann Hwang
王勇智
Yung-Chih Wang
李宏仁
Hung-Jen Lee
洪崇展
Chung-Chan Hung
鄭敏元
Min-Yuan Cheng
邱聰智
Tsung-Chih Chiou
邱建國
Chien-Kuo Chiu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 266
中文關鍵詞: RC柱構件損傷等級折減因子非線性塑鉸耐震性能評估
外文關鍵詞: RC column, damage level, reduction factor, nonlinear plastic hinge, seismic performance assessment
相關次數: 點閱:232下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在1999年台灣集集地震之後,為提高低矮型鋼筋混凝土(Reinforced Concrete, RC)建築物的安全性,需進行建築物耐震性能的初步與詳細評估。當前對低矮型RC結構進行耐震性能初步與詳細評估方法,是根據近年幾次災難性地震有關的試驗數據與數據庫所發展,本研究的主要目的是對其進行修改,使其適用於受震損的低矮型RC建築結構。
    為量化RC柱構件的震後殘餘耐震性能,本研究使用具有撓曲、撓剪和剪力破壞模式的8組柱試體之試驗數據,得出在指定損傷等級下受損RC柱構件的殘餘耐震能力。因過去研究多採用靜力循環加載方式獲得受損RC柱構件的耐震性能折減因子,然受靜力循環加載作用的受損試體獲得的之折減因子與受動力加載作用下獲得的折減因子應有所不同,故對此差異進行研究。另採用本研究進行之動力試驗、先前研究之靜力試驗與太平洋地震工程研究中心結構性能數據庫(PEER)中獲得的試驗數據,經回歸分析獲得受損RC柱構件在各損傷等級的強度、勁度與能量消散折減因子。
    從試驗數據中獲得之折減因子可用於對RC柱構件的非線性塑鉸(Nonlinear Plastic Hinge)進行修正,以獲得受損RC柱構件的非線性塑鉸行為,亦通過試驗數據進行了驗證,並可應用於震後耐震性能詳細評估的非線性側推分析方法。此外,為發展震後低矮型RC建築結構耐震性能初步評估方法,採用受損RC柱構件的修正非線性塑鉸,並考慮勁度折減對構件強度發展曲線的影響,在對RC柱構件的變形限制下獲得單位面積的極限剪力強度折減因子。
    本研究對低矮型震損RC建築物提出震後耐震性能初步與詳細評估方法,並採用十棟實際受損的低矮型RC建築結構為案例進行演示與驗證。最後,參照目前國外震後緊急評估作法與結合本研究發展之震損建築物耐震性能評估方法,對我國現行災害後緊急評估流程提出修訂建議。


    After the 1999 Chi-Chi Earthquake in Taiwan, to improve the safety of a huge number of low-rise reinforced concrete (RC) buildings, including typical RC school buildings and street houses, preliminary and detailed seismic assessments were conducted for seismic capacity. Since the current method of preliminary seismic assessment for low-rise RC building structures uses experimental data and databases that contain information associated with several disastrous earthquakes, the main purpose of this work is to modify it to make it applicable to earthquake-damaged low-rise RC building structures.
    To quantify the post-earthquake residual seismic capacity of RC column members, experimental data for eight column specimens with flexural, flexural-shear and shear failure modes are used to derive residual seismic capacity of damaged RC column members for specified damage states in this work. Static-cyclic loading is used to identify the reduction factors of seismic capacity of damaged RC column members. The reduction factors of seismic capacity that are obtained from specimens that are damaged under static-cyclic loading differ from those obtained in dynamic testing, and this difference is investigated in this work. The experimental results obtained in this work, previously obtained results, and the "Pacific Earthquake Engineering Research Center Structural Performance Database (PEER)" are used to obtain reduction factors of strength, stiffness and energy dissipation. From the damage levels of column members after an earthquake, corresponding reduction factors can be determined and used in the seismic assessment of an RC building.
    In this work, reduction factors of strength, stiffness and energy dissipation, which are based on experimental data, are used to modify the nonlinear plastic hinges of damaged RC column members with various damage levels and can be applied to nonlinear pushover analysis of detailed seismic assessment. The behavior of modified nonlinear plastic hinges is verified using experimental data. To develop a method of preliminary seismic assessment for a damaged low-rise RC building structure, the reduction factors of shear strength per unit area are suggested using the modified nonlinear plastic hinges of the damaged RC column members. Additionally, the effect of the stiffness reduction on the development curve of strength of an RC column member is also considered in determining the reduction factors of shear. The preliminary and detailed evaluation methods for the post-earthquake seismic performance of low-rise RC buildings were proposed in this work and in a case study of ten real damaged low-rise RC building structures for demonstration and verification. Finally, the modification of current rapid-assessment regulations for disaster-damaging buildings was been proposed based on the international post-earthquake emergency evaluation procedures and the methods of post-earthquake seismic assessment.

    摘要 Abstract 致謝 目錄 表索引 圖索引 第一章 緒論 1.1 研究背景 1.2 研究動機與目的 1.3 研究範圍 1.4 研究流程與架構 第二章 震損RC建築物耐震性能評估相關研究 2.1 損傷等級分類標準與殘餘耐震性能比 2.1.1 結構整體損傷等級分類標準 2.1.2 結構構件損傷等級分類標準 2.1.3 建築物殘餘耐震性能比 2.1.4 損傷等級分類與殘餘裂縫寬度 2.2 震損構件耐震性能折減因子 2.2.1 能量消散折減因子量化研究 2.2.2 RC柱構件耐震性能折減因子量化研究 2.2.3 RC牆構件耐震性能折減因子量化研究 2.3 動力加載對RC構件力學性能影響 2.3.1 加載速率的影響 2.3.2 動力加載程序 2.4 震損建築物耐震性能緊急評估程序 2.5 現行RC建築物耐震性能評估方法介紹 2.5.1 耐震性能初步評估 2.5.2 耐震性能詳細評估 2.6 回顧與小結 第三章 動力試驗規劃與加載方案 3.1 試體設計參數 3.2 加載裝置介紹 3.3 試驗加載方案 3.3.1 建築物資訊與耐震性能 3.3.2 地震歷時與人工地震轉換 3.3.3 非線性歷時分析與動力加載位移歷時 3.4 量測儀器與內容 3.4.1 試體位移與變形量量測 3.4.2 鋼筋應變量測與資料擷取系統 3.4.3 裂縫寬度量測 3.5 材料試驗與軸向載重 3.5.1 混凝土抗壓試驗 3.5.2 鋼筋抗拉試驗 第四章 動力試驗結果分析與討論 4.1 儀器量測結果檢核 4.2 試體力量-位移關係曲線 4.2.1 試體試驗結果 4.2.2 試驗結果探討 4.3 基本力學性能分析 4.3.1 強度折減 4.3.2 勁度折減 4.3.3 能量消散折減 4.4 試體變形量與裂縫發展 4.4.1 變形量發展 4.4.2 裂縫發展 4.5 損傷等級劃分與折減因子量化 4.5.1 PEER數據資料庫 4.5.2 損傷等級與極限變形量 4.5.3 強度、勁度與能量消散折減因子 第五章 震損RC建築物耐震性能評估與案例研究 5.1 震損RC柱構件非線性行為 5.1.1 震損前RC柱構件非線性塑鉸曲線 5.1.2 震損後RC柱構件非線性塑鉸曲線 5.1.3 震損前後非線性行為模擬與試驗比較 5.2 震損RC牆構件非線性行為 5.2.1 震損前RC牆構件非線性塑鉸曲線 5.2.2 震損後RC牆構件非線性塑鉸曲線 5.2.3 震損前後非線性行為模擬與試驗比較 5.3 震損建築物耐震性能初步評估方法 5.3.1 單位面積極限剪力強度折減因子 5.3.2 考慮震損建築物耐震性能初步評估 5.4 震損建築物耐震性能詳細評估方法 5.4.1 構件開裂勁度調整 5.4.2 構件非線性塑鉸參數調整 5.5 案例研究 5.5.1 震損街屋案例分析 5.5.2 震損校舍案例分析 5.5.3 耐震初步與詳細評估結果比較 第六章 震後危險建築物緊急評估流程修訂建議 6.1 國內外震後緊急評估流程與作法 6.1.1 國外震後緊急評估方法介紹 6.1.2 國內震後緊急評估方法介紹 6.1.3 國內外差異比較 6.2 災害後危險建築物緊急評估流程修訂建議 6.2.1 現行窒礙問題 6.2.2 評估流程與表單修訂建議 6.2.3 評估流程綜合說明 第七章 結論建議與未來展望 7.1 結論 7.2 建議 7.3 未來展望 參考文獻 附錄A 各試體試驗過程損傷與裂縫發展情形 附錄B 各國緊急評估判定標準表 附錄C 修訂之緊急評估表

    ACI Committee 318, Building code requirements for structural concrete and commentary (ACI 318R-14), American Concrete Institute, Farmington Hills, MI, 2014.
    ACI Committee 318, Building code requirement for structural concrete and commentary (ACI 318-05), American Concrete Institute, Farmington Hills, MI, 2005.
    Anagnostopoulos S., Moretti M., Post-earthquake emergency assessment of building damage, safety and usability—Part 1: Technical issues, Soil Dynamics and Earthquake Engineering, 2008 28 (3): 223–232.
    AIJ, Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings Based on Inelastic Displacement Concept, Architectural Institute of Japan, 1999, Tokyo, Japan. (in Japanese).
    AIJ, Guidelines for Performance Evaluation of Earthquake Resistant Reinforced Concrete Buildings (Draft), Architecture Institute of Japan, 2004. Tokyo, Japan.
    AIJ, Guidelines for Performance Evaluation of Earthquake Resistant Reinforced Concrete Buildings (Draft), Architecture Institute of Japan, 2005, Tokyo, Japan.
    Anagnostopoulos S., Moretti M., Post-earthquake emergency assessment of building damage, safety, and usability—Part 1: Technical issues, Soil Dynamics and Earthquake Engineering, 2008, 28 (3), 223–232.
    ATC-20, Procedures for post-earthquake safety evaluation of buildings, Applied Technology Council, 1989, Redwood City, CA.
    ATC 20-1, Field manual: Post earthquake safety evaluation of buildings, Applied Technology Council, 2005, second edition, Redwood City, CA.
    ATC-40, Seismic evaluation and retrofit of concrete buildings, Applied Technology Council, 1996, Redwood City, California, USA.
    Arakawa T., Arai Y., Effects of the rate of cyclic loading on the inelastic behavior of RC columns. Proceedings of the 8th World Conference on Earthquake Engineering, 1984, San Francisco, 521-528.
    ASCE, Seismic rehabilitation of existing buildings (ASEC-41), American Society of Civil Engineers Reston, Virginia, 2006, USA.
    Chen L, X. Lu, H. Jiang, J., Zheng. Experimental investigation of damage behavior of RC frame members including non-seismically designed columns, Earthquake Engineering and Engineering Vibration, 2009, 8 (2), 301–311.
    Chiu C.K., Sung H.F., Chi K.N., Hsiao F.P., Experimental Quantification on the Residual Seismic Capacity of Damaged RC Column Members, International Journal of Concrete Structures and Materials, 2019, 13 (1), 17.
    Chiu C.K., Sung H.F., Chiou T.C., Quantification of the reduction factors of seismic capacity for damaged RC column members using the experiment database, Earthquake Engineering & Structural Dynamics, 2020, 50 (3), 756-776.
    CPAMI, Seismic Design Code for Buildings in Taiwan, Construction and Planning Agency, Ministry of the Interior, 2011, Taiwan, https://www.cpami.gov.tw.
    CPAMI, The Rapid-assessment Regulations for Disaster-damaging Buildings, Construction and Planning Agency Ministry of the Interior, 2009, Taiwan, https://www.cpami.gov.tw.
    Chiou T.C., Hwang S.J., Chung L.L., Tu Y.S., Shen W.C., Weng P.W., Seismic Rapid Evaluation of Low‐Rise Street House, Structural Engineering, 2014, 29 (4), 65‐87, Taiwan. (in Chinese)
    Chiou T.C., Hwang S.J., Chung L.L., Tu Y.S., Shen W.C., Weng P.W., Preliminary Seismic Assessment of Low‐Rise Reinforced Concrete Buildings in Taiwan, The 16th World Conference on Earthquake Engineering, 16WCEE, 2016 Santiago, Chile.
    CSI , Extended 3D analysis of building systems (ETABS), nonlinear version 9.5. User’s Manual, Computer and Structures, Inc., 2008, Berkeley, California, USA.
    Carreño, M. L., Sistema Experto para la Evaluación del Daño Postsísmico en Edificios [Expert system for post-earthquake building damage evaluation], Master Thesis, Department of Civil and Environmental Engineering, University of Los Andes, 2001, Bogotá, Colombia.
    Di Ludovico, M., Polese, M., d'Aragona, M. G., Prota, A., Manfredi, G., A proposal for plastic hinges modification factors for damaged RC columns. Engineering Structures, 2013, 51, 99-112.
    Elwood K.J., Moehle J.P., Axial capacity model for shear damaged columns, ACI Structural Journal. 2005, 102 (4), 578-587.
    Elwood K.J., Moehle J.P., Drift capacity of reinforced concrete columns with light transverse reinforcement, Earthquake Spectra. 2005, 21 (1), 71-89.
    FEMA 273, NEHRP guidelines for the seismic rehabilitation of buildings, Federal Emergency Management Agency, 1998, Washington, D.C.
    FEMA 306, Evaluation of earthquake damaged concrete and masonry wall buildings – basic procedures manual, Federal Emergency Management Agency, 1998, Washington, DC.
    FEMA 307, Evaluation of earthquake damaged concrete and masonry wall buildings – technical resources, Federal Emergency Management Agency, 1998, Washington, DC.
    FEMA 308, Repair of Earthquake Damaged Concrete and Masonry Wall Buildings, Federal Emergency Management Agency, 1998, Washington, DC.
    FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings, Federal Emergency Management Agency, 2000, Washington, D.C.
    Goretti A., Post-Earthquake Building Usability: An Assessment. Technical Report SSN/RT/01/03, 2001, Italy.
    Ito Y., Suzuki Y., Maeda M., Residual Seismic Performance Assessment for Damaged RC Building Considering the Reduction of Strength, Deformation and Damping Ratio, Proceeding of JCI Annual Convention (Japan Concrete Institute), 2015, 37(2), 787-792.
    IZIIS, Methodologyand procedure for the evaluation of seismic damage, Institute of Earthquake Engineering and Engineering Seismology, 1984, University Kiril and Metodij, Skopje,Yugoslavia.
    JBDPA, The Rapid-assessment Regulations for Disaster-damaging Buildings, Japan Building Disaster Prevention Association, 2021, Tokyo, Japan. (in Japanese)
    JBDPA, Standard for seismic evaluation of existing reinforced concrete buildings, guidelines for seismic retrofit of existing reinforced concrete buildings, and technical manual for seismic evaluation and seismic retrofit of existing reinforced concrete buildings, Japan Building Disaster Prevention Association, 2017,.Tokyo, Japan. (in Japanese)
    JBDPA, Guideline for Post-earthquake Damage Evaluation and Rehabilitation, Japan Building Disaster Prevention Association, 1991 (revised in 2001、2015) Tokyo, Japan. (in Japanese)
    Lynn A., Moehle J.P., Mahin S.A., Holmes W.T., Seismic Evaluation of Existing Reinforced Concrete Building Columns, Earthquake Spectra, 1996, 12 (4), 715-739.
    Mahin S.A., Bertero V.V., Rate of loading effect on uncracked and repaired reinforced concrete members, Earthquake Engineering Research Center, 1972, University of California, Berkeley, CA, EERC 72-9.
    Marder K.J., Motter C.J., Elwood KJ, Clifton GC., Effects of variation in loading protocol on the strength and deformation capacity of ductile reinforced concrete beams, Earthquake Engineering & Structural Dynamics, 2018, 47 (11). 2195-2213.
    Maeda M., Bunno M, Post-earthquake damage evaluation for RC buildings based on residual seismic capacity in structural members, The Third US-Japan Workshop on Performance Based Seismic Design of Reinforced Concrete Building Structures, 2001, Seattle, USA, 157-169.
    Maeda M., Kang D.E., Post-earthquake damage evaluation for reinforced concrete buildings. Journal of Advanced Concrete Technology, 2009, 7 (3), 327-335.
    Maeda M., Nakano Y., Lee K.S., Post-earthquake damage evaluation for R/C buildings based on residual seismic capacity, The 13th World Conference on Earthquake Engineering, 2004, Vancouver, B.C., Canada, Paper No.1179.
    Mo Y.L., Wang S.J., Seismic Behavior of RC Columns with Various Tie Configurations, Journal of Structural Engineering, 2000, 126(10), 1122-1130.
    Mushtaq A., Khan S.A., Ahmad J., Ali M.U., Effect of 3D models on seismic vulnerability assessment of deficient RC frame structures, Australian Journal of Structural Engineering, 2018, 19 (3), 214-221.
    NCREE, Seismic Evaluation of Reinforced Concrete Structure with Pushover Analysis (NCREE-09-015), National Center for Research on Earthquake Engineering of Taiwan, 2009, Taipei, Taiwan. (in Chinese)
    NCREE, Technology handbook for seismic evaluation and retrofit of school buildings (NCREE-13-023), National Center for Research on Earthquake Engineering of Taiwan, 2013, Taipei, Taiwan. (in Chinese)
    NCREE, Seismic Performance Evaluation Deteriorating and Earthquake-damaged RC School Buildings (NCREE-12-018), National Center for Research on Earthquake Engineering of Taiwan, 2012, Taipei, Taiwan. (in Chinese)
    NCREE, Preliminary Seismic Evaluation Method for Typical Building Structures of Primary and Secondary schools (NCREE-03-049), National Center for Research on Earthquake Engineering of Taiwan, 2003, Taipei, Taiwan. (in Chinese)
    NZSEE, Field Guide: Rapid Post Disaster Building Usability Assessment-Earthquakes, New Zealand Society for Earthquake Engineering, 2014, New Zealand.
    Tomonori O., Takashi M., An Experimental Study on Energy Absorption Capacity of Columns in Reinforced Concrete Structures, Doboku Gakkai Ronbunshu, 1984, 1984 (350), 23-33.
    Ohkubo, M., Current Japanese system on seismic capacity and retrofit techniques for existing reinforced concrete buildings and postearthquake damage inspection and restoration techniques, Technical Rep. SSRP-91/02, 1991, San Diego, CA: Dept. of Applied Mechanics and Engineering Sciences, Univ. of California.
    Original seismic data of Taiwan Chi-Chi earthquake (ASCII, 1999), https://scweb.cwb.gov.tw/special/19990921pga.asp.
    Orozco G.L., Ashford S.A., Effects of large velocity pulses on reinforced concrete bridge columns, PEER report 2002/23, 2002, University of California, Berkeley.
    Otani S., Kanko T., Shiohara H., Strain rate effect on performance of reinforced concrete members, Concrete structure in seismic regions: FiB, 2003.
    Park Y.J., Ang A. H-S., (1985). Mechanistic Seismic Damage Model for Reinforced Concrete, Journal of the Structural Engineering, 111(4): 722-739.
    PEER, Structural performance database, Pacific Earthquake Engineering Research Center, University of California, Berkeley, http://nisee.berkeley.edu/spd/.
    Poegoeh A.C., Reduction factors of seismic capacity for earthquake-damaged reinforced concrete columns, National Taiwan University of Science and Technology, 2012, Master thesis.
    Pozzo E., The Influence of axial load and rate of loading on experimental post-elastic behavior and ductility of reinforcedconcrete members, Materials and Structures, 1987, 20 (4), 303–314.
    Paulay T., Priestley M.J.N., Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, Inc., 1992, New York, 744.
    Sinha R., Goyal A., A national policy for seismic vulnerability assessment of buildings and procedure for rapid visual screening of buildings for potential seismic vulnerability, Indian Institute of Technology Bombay, 2010.
    Rodríguez M., Castrillón E., Manual de evaluación postsísmica de la seguridadestructural de edificaciones, [Manual for post-earthquake evaluation of structural safety of buildings], Series del Instituto de Ingeniería 569, 1995, UNAM, México.
    Sezen H., Moehle J.P., Seismic Behavior of Shear-Critical Reinforced Concrete Building Columns, Seventh U.S. National Conference on Earthquake Engineering, July 21-25, 2002, Boston, Massachusetts.
    Shiradhonkar S. R., Seismic damage categorisation and damage index for reinforced concrete buildings, Ph.D. thesis, 2016, Indian Institute of Technology Bombay.
    Sinha R., Goyal A., A national policy of seismic vulnerability assessment of buildings and procedure for rapid visual screening of buildings for potential seismic vulnerability, Technical Rep. Mumbai, 2004, India: Indian Institute of Technology Bombay.
    Song J.C., Chiou T.C., Hwang S.J., Investigation of column-to-floor ratio for seismic safety of RC school buildings in Taiwan (NCREE-13-031), National Center for Research on Earthquake Engineering of Taiwan, 2013, Taipei, Taiwan. (in Chinese)
    Sozen M.A., Monteiro P., Moehle J.P., Tang H.T., Effects of cracking and age on stiffness reinforced concrete walls resisting in-plane shear, The Fourth Symposium on Nuclear Power Plant Structures, Equipment, and Piping, December 3.1-3.13, 1992, North Carolina State Universerty, Raleigh, NC.
    Su K.L., Preliminary Seismic Evaluation Method for Typical School Building in Taiwan, National Taiwan University, 2008, Taipei, Master thesis. (in Chinese)
    Sugi T., Ishimori A., Tajima K., Shirai N., Damage evaluation of RC beam members based on accurate measurement of displacement and crack widths with scanner (Part 2): Proposal of rational suggestion of quantitative evaluation model for evaluating of shear crack width – shear deformation relationship, Summaries of Technical Papers of Annual Meeting of Architectural Institute of Japan (AIJ), 2007, C-2, 373-374.
    Takeda T., Sozen M.A., Nilson N.N., Reinforced concrete response to simulated earthquake, Journal of Structural Engineering,1970, 96(12): 2557-2573.
    Tanaka H., Park R., Effect of Lateral Confining Reinforcement on the Ductile Behavior of Reinforced Concrete Columns, Report 90-2, Department of Civil Engineering, University of Canterbury, June 1990, 458 pages.
    Technology Council, Seismic Evaluation and Retrofitting of Existing Reinforced Concrete Buildings, Japan Building Disaster Prevention Association (JBDPA), 2017, Tokyo, Japan, https://kenbokyo.jp/book/item.html?bid=39.
    Wang D., Li H.N., Li G., Experimental study on dynamic mechanical properties of reinforced concrete column, Journal of Reinforced Plastics and Composites, 2013, 32 (23), 1793–1806.
    Weng P.W., Li Y.A., Tu Y.S., Hwang S.J., Prediction of the Lateral Load-Displacement Curves for Reinforced Concrete Squat Walls Failing in Shear, Journal of Structural Engineering, 2017, 143 (10), 04017141.
    Zhang L.X.B., Hsu T.T.C., Behavior and Analysis of 100 MPa Concrete Membrane Elements, Journal of Structural Engineering, 1998, 124 (1), 24-34.
    HAO Linfei, 鈴木裕介, 前田匡樹, “構造性能低下を考慮した被災RC造建物の残存耐震性能評価法”, コンクリート工学年次論文集, 2016, 38(2).
    三浦耕太, 松川和人, 前田匡樹, “架構耐震性能に及ぼす部材の影響度に基づいた被災建物の残存耐震性能評価法と破壊モード混在型建物への拡張”, コンクリート工学年次論文集, 2011, 33(2).
    李宏仁,黃世建,「鋼筋混凝土結構不連續區域之剪力強度評估軟化壓拉桿模型簡算法之實例應用」,中華民國結構工程學會,結構工程,第17卷,第4期,第53-70頁,2002年。
    簡文郁、連冠華、張毓文、鍾立來、黃世建,「校舍結構易損性與耐震性能標準研究」,中華民國第九屆結構工程研討會,L-0289,高雄,2008年。
    陳建忠、李台光、鄒本駒、周楷峻、葉勇凱、翁樸文、邱聰智、沈文成,「震災後危險建築物緊急評估技術及制度之修訂研究」,內政部建築研究所協同研究報告,台北,2014年。
    吳秉誠、范成宇、邱建國,「典型鋼筋混凝土柱構件震後性能研究」,國立台灣科技大學營建工程系,台北,碩士論文,2017年。
    日本建築防災協会,「震災建築物の被災度区分判定基準及び復旧技術指針」,東京,日本,2015年。
    日本防災建築學會,「受災建築物應急危險度判定手册」,東京,日本,2016年。
    內政部營建署災害後危險建築物緊急評估表系統,「災害後危險建築物緊急評估作業人員講習會教材」,2010年。
    盧奕羽,「考慮震損之RC填充牆耐震容量研究」,國立台灣科技大學營建工程系,台北,碩士論文,2019年。
    姚亭君,「界面滑移對震損RC填充牆耐震容量之影響」,國立台灣科技大學營建工程系,台北,碩士論文,2020年。
    蔡仁傑「鋼筋混凝土開孔牆之側力位移曲線預測」,國立台灣大學土木工程學系,台北,碩士論文,2015年。

    無法下載圖示 全文公開日期 2024/08/12 (校內網路)
    全文公開日期 2024/08/12 (校外網路)
    全文公開日期 2024/08/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE