簡易檢索 / 詳目顯示

研究生: 莊永來
Shendy Leonardo Chandra
論文名稱: 硼砂與飛灰對牡蠣殼灰鹼激發爐石漿體新拌與硬固性質之影響
Effects of borax and fly ash on the fresh and hardened properties of alkali-activated slag paste using oyster shell ash as the activator
指導教授: 張大鵬
Ta-Peng Chang
陳君弢
Chun-Tao Chen
口試委員: 楊仲家
Chung-Chia Yang
廖文正
Wen-Cheng Liao
施正元
Jeng-Ywan Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 100
中文關鍵詞: 鹼激發材料牡蠣殼灰爐石碴粉飛灰硼砂快速凝結時間
外文關鍵詞: alkali-activated material, oyster shell ash, slag, fly ash, borax, rapid setting time
相關次數: 點閱:193下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

儘管鹼激發材料是眾所周知的傳統水泥替代粘合劑,但其激發性無疑地是不夠永 續。本研究旨在分析硼砂和飛灰對單件式牡蠣殼灰 (OSA) 激發爐石漿體工程特性的影 響。進行一系列實驗來測量 凝結漿體的工作性、凝固時間、水化熱、抗壓強度、超音 脈衝速度 (UPV) 和熱導率。此外,還通過 X 光繞射分析(XRD) 和掃描電子顯微鏡 (SEM) 進行微觀結構研究。試驗結果表明, OSA 增強鹼激發凝結漿體之試體力學和微觀結構 性能,其中 以添加 20%OSA 之漿體試體強度增量最高,但凝固時間最快。在漿體混合 物中加入硼砂和粉煤灰,緩解早期抗壓強度較低及快速凝固現象。 XRD 結果和 SEM 圖像分析表明,添加硼砂和飛灰會阻礙 C-S-H 凝膠化合物和其他水化產物之早期成長。 然而,這種不利影響隨齡期增加轉變為有利功能,其中無論是將硼砂或飛灰摻入漿體 混合物中,鹼激發爐石漿體性能都會提高,更多水化產物和更緻密試體微觀結構均驗 證後期可以呈現更好的試體工程特性。


Although the alkali-activated material is a well-known alternative binder to the conventional cement, its activation is arguably not sustainable enough. This study is aimed to analyze the influence of borax and fly ash on the engineering properties of one-part oyster shell ash (OSA)-activated slag paste. A series of experiments were carried out to measure workability, setting time, the heat of hydration, compressive strength, ultrasonic pulse velocity (UPV), and thermal conductivity of OSA-activated slag paste. Furthermore, the microstructural investigation through X-ray diffraction (XRD) and scanning electron microscope (SEM) was conducted. The test results indicated that the enhanced mechanical and microstructural properties of cementitious paste specimens prepared with OSA as the activator could be formed where the paste with 20% of OSA had the highest increment in strength but the quickest setting time. The addition of borax and fly ash into the paste mixture alleviated the rapid setting time phenomenon and the lower early compressive strength. The analyses of XRD results and SEM images illustrated that adding borax and fly ash could hinder the development of C-S-H gels and other hydration products of cementitious paste at early ages. However, such unfavorable effects subsequently turned into beneficial impacts with age where the performance of alkali- activated slag paste was increased whether the borax nor fly ash was incorporated into the mixture. More hydration products and denser microstructure of paste specimens indicated that the better characteristics of specimens could be achieved at later ages.

摘要 ..........................................i Abstract ......................................ii Personal acknowledgements ........... iii Table of contents.......................iv List of tables ..............................vii List of figures .............................. viii List of symbols and abbreviations.........................xi Chapter 1 Introduction .....................1 1.1 Research background............1 1.2 Research aim.........................4 1.3 Research outline ....................5 Chapter 2 Literature review.............7 2.1 GGBFS and its utilization in construction industry....................7 2.2 Application of OSA as cementitious material ..........................9 2.3 Role of fly ash as an alternative binder from OPC.....................10 2.4 Approaches to extend the setting time of alkali-activated material.........12 Chapter 3 Materials and experimental program..........................17 3.1 Materials ......................17 3.2 Mixture design..............20 3.3 Experimental methods ................................21 3.3.1 Mixing and curing procedure .............................21 3.3.2 Flowability..............22 3.3.3 Setting time.............23 3.3.4 Heat of hydration..........................23 3.3.5 Compressive strength ................................24 3.3.6 Ultrasonic pulse velocity (UPV)................................24 3.3.7 Thermal conductivity.............................................25 3.3.8 X-ray diffraction (XRD)......................................26 3.3.9 Scanning electron microscopy (SEM)............................26 Chapter 4 Results and discussions ..................................40 4.1 Influence of OSA content to slag-based binder........................40 4.1.1 Flowability...............40 4.1.2 Setting time....................................40 4.1.3 Heat of hydration............................41 4.1.4 Compressive strength ...................................42 4.1.5 UPV ...........................43 4.1.6 Thermal conductivity...............................43 4.1.7 XRD........................44 4.1.8 SEM........................................44 4.2 Comparison of different ratio between fly ash to slag.................45 4.2.1 Flowability............45 4.2.2 Setting time.............46 4.2.3 Heat of hydration..............46 4.2.4 Compressive strength ................................47 4.2.5 UPV .....................47 4.2.6 Thermal conductivity..............47 4.2.7 XRD......................48 4.2.8 SEM...................48 4.3 Borax dosage effect .............................49 4.3.1 Flowability..............49 4.3.2 Setting time..............49 4.3.3 Heat of hydration.......50 4.3.4 Compressive strength ...............................50 4.3.5 UPV .......................51 4.3.6 Thermal conductivity..........................51 4.3.7 XRD........................52 4.3.8 SEM..........................52 Chapter 5 Conclusions and recommendations .........................70 5.1 Conclusions .....................70 5.2 Recommendations for further research...............................71 References....................................... 74

[1] Abdel-Gawwad, H. A., & Abo-El-Enein, S. A. (2016). A novel method to produce dry geopolymer cement powder. Housing and Building National Research Center Journal, 12(1), 13–24. https://doi.org/10.1016/j.hbrcj.2014.06.008
[2] Abdollahnejad, Z., Luukkonen, T., Mastali, M., Giosue, C., Favoni, O., Ruello, L., ... & Illikainen, M. (2020). Microstructural analysis and strength development of one-part alkali-activated slag/ceramic binders under different curing regimes. Waste and Biomass Valorization, 11(6), 3081–3096. https://doi.org/10.1007/s12649-019-00626-9
[3] ACI 233-00. (2000). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, Farmington Hills, Michigan, United States.
[4] ACI 318-19. (2019). Slag cement in concrete and mortar. American Concrete Institute, Farmington Hills, Michigan, United States.
[5] Alizadeh, R. A. (2009). Nanostructure and engineering properties of basic and modified calcium-silicate-hydrate systems. (Doctoral dissertation, University of Ottawa, Ottawa, Canada). Retrieved from https://ruor.uottawa.ca/handle/10393/29910
[6] Andrew, R. M. (2019). Global CO2 emissions from cement production, 1928-2018. Earth System Science Data, 11(4), 1675–1710. https://doi.org/10.5194/essd-11-1675-2019
[7] Angdiarto, S. P., & Chang, T. P. (2020). Influences of oyster shell ash and FGD gypsum on engineering properties of class F fly ash based geopolymer paste. (Unpublished master’s thesis). National Taiwan University of Science and Technology, Taipei, Taiwan.
[8] Antoni, A., Wijaya, S. W., Satria, J., Sugiarto, A., & Hardjito, D. (2016). The use of borax in deterring flash setting of high calcium fly ash based geopolymer. Materials Science Forum, 857, 416–420. https://doi.org/10.4028/www.scientific.net/MSF.857.416
[9] ASTM C109-20. (2020). Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50 mm] cube specimens). American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States.
[10] ASTM C1152-03. (2003). Standard test method for acid-soluble chloride in mortar and concrete. American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States.
[11] ASTM C188-17. (2017). Standard test method for density of hydraulic cement. American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States.
[12] ASTM C191-20. (2020). Standard test methods for time of setting of hydraulic cement by Vicat needle. American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States.
[13] ASTM C230-21. (2021). Standard specification for flow table for use in tests of hydraulic cement. American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States.
[14] ASTM C25-11. (2011). Standard test methods for chemical analysis of limestone, quicklime, and hydrated lime. American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States.
[15] ASTM C597-16. (2016). Standard test method for pulse velocity through concrete. American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States.
[16] ASTM C618-12. (2012). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States. https://doi.org/10.1520/C0618-12a
[17] ASTM C1437-20. (2020). Standard test method for flow of hydraulic cement mortar. American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States.
[18] Attah, I. C., Etim, R. K., & Sani, J. E. (2019). Response of oyster shell ash blended cement concrete in sulphuric acid environment. Civil and Environmental Research, 11(4), 62-74.
[19] Bagheri, A., Nazari, A., Sanjayan, J. G., & Rajeev, P. (2017). Alkali activated materials vs geopolymers: Role of boron as an eco-friendly replacement. Construction and Building Materials, 146, 297–302. https://doi.org/10.1016/J.CONBUILDMAT.2017.04.137
[20] Bagheri, A., Nazari, A., Sanjayan, J. G., Rajeev, P., & Duan, W. (2017). Fly ash-based boroaluminosilicate geopolymers: Experimental and molecular simulations. Ceramics International, 43(5), 4119–4126. https://doi.org/10.1016/J.CERAMINT.2016.12.020
[21] Bakharev, T. (2005). Geopolymeric materials prepared using class F fly ash and elevated temperature curing. Cement and Concrete Research, 35(6), 1224–1232. https://doi.org/10.1016/J.CEMCONRES.2004.06.031
[22] Bensted, J., Callaghan, I. C., & Lepre, A. (1991). Comparative study of the efficiency of various borate compounds as set-retarders of class G oilwell cement. Cement and Concrete Research, 21(4), 663–668. https://doi.org/10.1016/0008-8846(91)90117-Z
[23] Bernal, S. A., Mejía De Gutiérrez, R., Pedraza, A. L., Provis, J. L., Rodriguez, E. D., & Delvasto, S. (2011). Effect of binder content on the performance of alkali-activated slag concretes. Cement and Concrete Research, 41(1), 1–8. https://doi.org/10.1016/J.CEMCONRES.2010.08.017
[24] Chang, C. J. (2018). Strategies for promoting steelmaking slag resourcezation in Taiwan. In Materials science, Engineering and Chemistry Web of Conferences, 187, 03001. https://doi.org/10.1051/matecconf/201818703001
[25] Chindaprasirt, P., & Cao, T. (2015). Setting, segregation and bleeding of alkali-activated cement, mortar and concrete binders. Handbook of Alkali-Activated Cements, Mortars and Concretes, 113–131. https://doi.org/10.1533/9781782422884.2.113
[26] Chindaprasirt, P., de Silva, P., Sagoe-Crentsil, K., & Hanjitsuwan, S. (2012). Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. Journal of Materials Science, 47(12), 4876–4883. https://doi.org/10.1007/s10853-012-6353-y
[27] Chindaprasirt, P., Phoo-ngernkham, T., Hanjitsuwan, S., Horpibulsuk, S., Poowancum, A., & Injorhor, B. (2018). Effect of calcium-rich compounds on setting time and strength development of alkali-activated fly ash cured at ambient temperature. Case Studies in Construction Materials, 9, e00198. https://doi.org/10.1016/J.CSCM.2018.E00198
[28] Chithambaram, S. J., Kumar, S., & Prasad, M. M. (2019). Thermo-mechanical characteristics of geopolymer mortar. Construction and Building Materials, 213, 100– 108. https://doi.org/10.1016/J.CONBUILDMAT.2019.04.051
[29] Cizer, Ö., van Balen, K., van Gemert, D., & Elsen, J. (2007). Carbonation and hydration of mortars with calcium hydroxide and calcium silicate binders. Proceedings International Conference on Sustainable Construction Materials and Technologies, 611–621.
[30] Cong, P., & Mei, L. (2021). Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum. Construction and Building Materials, 275, 122171. https://doi.org/10.1016/J.CONBUILDMAT.2020.122171
[31] Criado, M., Fernández-Jiménez, A., & Palomo, A. (2007). Alkali activation of fly ash: Effect of the SiO2/Na2O ratio: Part I: FTIR study. Microporous and Mesoporous Materials, 106(1–3), 180–191. https://doi.org/10.1016/J.MICROMESO.2007.02.055
[32] Cristelo, N., Fernández-Jiménez, A., Castro, F., Fernandes, L., & Tavares, P. (2019). Sustainable alkaline activation of fly ash, aluminium anodising sludge and glass powder blends with a recycled alkaline cleaning solution. Construction and Building Materials, 204, 609–620. https://doi.org/10.1016/J.CONBUILDMAT.2019.01.226
[33] De Belie, N., Soutsos, M., & Gruyaert, E. (Eds.). (2018). Properties of fresh and hardened concrete containing supplementary cementitious materials (Vol. 25). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319- 70606-1
[34] Djobo, Y. J. N., Elimbi, A., Manga, J. D., & Ndjock, I. D. L. (2016). Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ash-based geopolymers. Construction and Building Materials, 113, 673–681. https://doi.org/10.1016/J.CONBUILDMAT.2016.03.104
[35] Duxson, P., & Provis, J. L. (2008). Designing precursors for geopolymer cements. Journal of the American Ceramic Society, 91(12), 3864–3869. https://doi.org/10.1111/j.1551- 2916.2008.02787.x
[36] El-Chabib, H. (2020). Properties of SCC with supplementary cementing materials. In Self- Compacting Concrete: Materials, Properties and Applications, 283–308. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-817369-5.00011-8
[37] Etuk, B. R., Etuk, I. F., & Asuquo, L. O. (2012). Feasibility of using sea shells ash as admixtures for concrete. Journal of Environmental Science and Engineering. A, 1(1A).
[38] Fang, G., Ho, W. K., Tu, W., & Zhang, M. (2018). Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Construction and Building Materials, 172, 476–487. https://doi.org/10.1016/J.CONBUILDMAT.2018.04.008
[39] Ferreira, L., de Brito, J., & Saikia, N. (2012). Influence of curing conditions on the mechanical performance of concrete containing recycled plastic aggregate. Construction and Building Materials, 36, 196–204. https://doi.org/10.1016/J.CONBUILDMAT.2012.02.098
[40] Fu, X., & Chung, D. D. L. (1997). Effects of silica fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific heat of cement paste. Cement and Concrete Research, 27(12), 1799–1804. https://doi.org/10.1016/S0008-8846(97)00174-9
[41] Gao, X., Yu, Q. L., & Brouwers, H. J. H. (2015). Properties of alkali activated slag–fly ash blends with limestone addition. Cement and Concrete Composites, 59, 119–128. https://doi.org/10.1016/J.CEMCONCOMP.2015.01.007
[42] Gereffi, G., Wadhwa, V., Rissing, B., & Ong, R. (2018). Getting the Numbers Right: International engineering education in the United States, China, and India. Journal of Engineering Education, 97(1), 13-25.
[43] Ghadermazi, R., Hamdipour, S., Sadeghi, K., Ghadermazi, R., & Khosrowshahi Asl, A. (2019). Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose—A review. Food Science & Nutrition, 7(11), 3363–3377.
[44] Giergiczny, Z. (2019). Fly ash and slag. Cement and Concrete Research, 124, 105826. https://doi.org/10.1016/J.CEMCONRES.2019.105826
[45] Gökçe, H. S., Tuyan, M., & Nehdi, M. L. (2021). Alkali-activated and geopolymer materials developed using innovative manufacturing techniques: A critical review. Construction and Building Materials, 303, 124483. https://doi.org/10.1016/J.CONBUILDMAT.2021.124483
[46] Hadi, M. N. S., Farhan, N. A., & Sheikh, M. N. (2017). Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Construction and Building Materials, 140, 424–431. https://doi.org/10.1016/J.CONBUILDMAT.2017.02.131
[47] Hajimohammadi, A., & van Deventer, J. S. J. (2017). Characterisation of one-part geopolymer binders made from fly ash. Waste and Biomass Valorization, 8(1), 225–233. https://doi.org/10.1007/s12649-016-9582-5
[48] Halstead, W. J. (1986). Use of fly ash in concrete. National Cooperative Highway Research Program Synthesis of Highway Practice, 127, 66.
[49] Han, Y., Lin, R., & Wang, X. Y. (2022). Performance of sustainable concrete made from waste oyster shell powder and blast furnace slag. Journal of Building Engineering, 47, 103918. https://doi.org/10.1016/J.JOBE.2021.103918
[50] Haruna, S., Mohammed, B. S., Wahab, M. M. A., & Liew, M. S. (2020). Effect of paste aggregate ratio and curing methods on the performance of one-part alkali-activated concrete. Construction and Building Materials, 261, 120024. https://doi.org/10.1016/J.CONBUILDMAT.2020.120024
[51] Hewlett, P., & Liska, M. (Eds.). (2019). Lea’s chemistry of cement and concrete. Oxford, England: Butterworth-Heinemann.
[52] Hong, J., Chen, W., Wang, Y., Xu, C., & Xu, X. (2014). Life cycle assessment of caustic soda production: a case study in China. Journal of Cleaner Production, 66, 113–120. https://doi.org/10.1016/J.JCLEPRO.2013.10.009
[53] Hwang, C. L., & Huynh, T. P. (2015). Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Construction and Building Materials, 101, 1–9. https://doi.org/10.1016/J.CONBUILDMAT.2015.10.025
[54] International Energy Agency (2020). Energy technology perspectives 2020. Retrieved from https://www.iea.org/reports/energy-technology-perspectives-2020
[55] Ismail, N., & El-Hassan, H. (2018). Development and characterization of fly ash–slag blended geopolymer mortar and lightweight concrete. Journal of Materials in Civil Engineering, 30(4), 04018029. https://doi.org/10.1061/(asce)mt.1943-5533.0002209
[56] Jiang, J., Zheng, Q., Hou, D., Yan, Y., Chen, H., She, W., ... & Sun, W. (2018). Calcite crystallization in the cement system: morphological diversity, growth mechanism and shape evolution. Physical Chemistry Chemical Physics, 20(20), 14174–14181. https://doi.org/10.1039/C8CP01979G
[57] Kim, K. H., Jeon, S. E., Kim, J. K., & Yang, S. (2003). An experimental study on thermal conductivity of concrete. Cement and Concrete Research, 33(3), 363–371. https://doi.org/10.1016/S0008-8846(02)00965-1
[58] Kim, M. S., Jun, Y., Lee, C., & Oh, J. E. (2013). Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cement and Concrete Research, 54, 208–214. https://doi.org/10.1016/J.CEMCONRES.2013.09.011
[59] Kolani, B., Buffo-Lacarrière, L., Sellier, A., Escadeillas, G., Boutillon, L., & Linger, L. (2012). Hydration of slag-blended cements. Cement and Concrete Composites, 34(9), 1009–1018. https://doi.org/10.1016/J.CEMCONCOMP.2012.05.007
[60] Kuncoro, A., & Chang, T. P. (2021). Influences of FGD gypsum and CCR on engineering properties of class F fly ash and GGBFS based alkali-activated material. (Unpublished master’s thesis). National Taiwan University of Science and Technology, Taipei, Taiwan.
[61] Lertwattanaruk, P., Makul, N., & Siripattarapravat, C. (2012). Utilization of ground waste seashells in cement mortars for masonry and plastering. Journal of Environmental Management, 111, 133–141. https://doi.org/10.1016/J.JENVMAN.2012.06.032
[62] Liu, C. H., Lee, H. T., Tsou, C. H., Wang, C. C., Gu, J. H., & Suen, M. C. (2020). Preparation and characterization of biodegradable polyurethane composites containing oyster shell powder. Polymer Bulletin, 77(6), 3325–3347. https://doi.org/10.1007/s00289-019-02906-9
[63] Liu, H. Y., Wu, H. S., & Chou, C. P. (2020). Study on engineering and thermal properties of environment-friendly lightweight brick made from Kinmen oyster shells & sorghum waste. Construction and Building Materials, 246, 118367. https://doi.org/10.1016/J.CONBUILDMAT.2020.118367
[64] Luhar, S., Cheng, T. W., & Luhar, I. (2019). Incorporation of natural waste from agricultural and aquacultural farming as supplementary materials with green concrete: A review. Composites Part B: Engineering, 175, 107076. https://doi.org/10.1016/J.COMPOSITESB.2019.107076
[65] Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). One-part alkali-activated materials: A review. Cement and Concrete Research, 103, 21– 34. https://doi.org/10.1016/J.CEMCONRES.2017.10.001
[66] Ma, Y., & Ye, G. (2015). The shrinkage of alkali activated fly ash. Cement and Concrete Research, 68, 75–82. https://doi.org/10.1016/J.CEMCONRES.2014.10.024
[67] Mallikarjuna Rao, G., & Gunneswara Rao, T. D. (2015). Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar. Arabian Journal for Science and Engineering, 40(11), 3067–3074. https://doi.org/10.1007/s13369-015-1757- z
[68] Matalkah, F., Xu, L., Wu, W., & Soroushian, P. (2017). Mechanochemical synthesis of one-part alkali aluminosilicate hydraulic cement. Materials and Structures, 50(1), 1-12. https://doi.org/10.1617/s11527-016-0968-4
[69] Mec, P., Boháčová, J., & Koňařík, J. (2016). Comparison of selected properties of Portland cement based materials and alkali activated materials based on granulated blast furnace slag. Materials Science Forum, 865, 107–113. https://doi.org/10.4028/www.scientific.net/MSF.865.107
[70] Mehta, P. K., & Monteiro, P. J. M. (2014). Concrete: microstructure, properties, and materials. New York, New York, United States: McGraw-Hill Education.
[71] Mo, K. H., Alengaram, U. J., Jumaat, M. Z., Lee, S. C., Goh, W. I., & Yuen, C. W. (2018). Recycling of seashell waste in concrete: A review. Construction and Building Materials, 162, 751–764. https://doi.org/10.1016/J.CONBUILDMAT.2017.12.009
[72] Muller, A. C. A., Scrivener, K. L., Skibsted, J., Gajewicz, A. M., & McDonald, P. J. (2015). Influence of silica fume on the microstructure of cement pastes: New insights from 1H NMR relaxometry. Cement and Concrete Research, 74, 116–125. https://doi.org/10.1016/J.CEMCONRES.2015.04.005
[73] Naghizadeh, A., & Ekolu, S. O. (2019). Method for comprehensive mix design of fly ash geopolymer mortars. Construction and Building Materials, 202, 704–717. https://doi.org/10.1016/J.CONBUILDMAT.2018.12.185
[74] Naqi, A., Siddique, S., Kim, H. K., & Jang, J. G. (2020). Examining the potential of calcined oyster shell waste as additive in high volume slag cement. Construction and Building Materials, 230, 116973. https://doi.org/10.1016/J.CONBUILDMAT.2019.116973
[75] Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. https://doi.org/10.1016/j.conbuildmat.2014.05.080
[76] Nath, P., & Sarker, P. K. (2015). Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cement and Concrete Composites, 55, 205–214. https://doi.org/10.1016/J.CEMCONCOMP.2014.08.008
[77] Nematollahi, B., Sanjayan, J., & Shaikh, F. U. A. (2015). Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate. Ceramics International, 41(4), 5696–5704. https://doi.org/10.1016/J.CERAMINT.2014.12.154
[78] Oderji, S. Y., Chen, B., Ahmad, M. R., & Shah, S. F. A. (2019). Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators. Journal of Cleaner Production, 225, 1–10. https://doi.org/10.1016/J.JCLEPRO.2019.03.290
[79] Oderji, S. Y., Chen, B., Shakya, C., Ahmad, M. R., & Shah, S. F. A. (2019). Influence of superplasticizers and retarders on the workability and strength of one-part alkali- activated fly ash/slag binders cured at room temperature. Construction and Building Materials, 229, 116891. https://doi.org/10.1016/J.CONBUILDMAT.2019.116891
[80] Pal, S. C., Mukherjee, A., & Pathak, S. R. (2003). Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research, 33(9), 1481–1486. https://doi.org/10.1016/S0008-8846(03)00062-0
[81] Pane, I., & Hansen, W. (2005). Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cement and Concrete Research, 35(6), 1155–1164. https://doi.org/10.1016/J.CEMCONRES.2004.10.027
[82] Pangdaeng, S., Phoo-ngernkham, T., Sata, V., & Chindaprasirt, P. (2014). Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Materials & Design, 53, 269–274. https://doi.org/10.1016/J.MATDES.2013.07.018
[83] Peng, M. X., Wang, Z. H., Shen, S. H., Xiao, Q. G., Li, L. J., Tang, Y. C., & Hu, L. L. (2017). Alkali fusion of bentonite to synthesize one-part geopolymeric cements cured at elevated temperature by comparison with two-part ones. Construction and Building Materials, 130, 103–112. https://doi.org/10.1016/J.CONBUILDMAT.2016.11.010
[84] Pitroda, J., Zala, L. B., & Umrigar, F. S. (2012). Experimental investigations on partial replacement of cement with fly ash in design mix concrete. International Journal of Advanced Engineering Technology, 3(4), 126–129.
[85] Puertas, F., González-Fonteboa, B., González-Taboada, I., Alonso, M. M., Torres-Carrasco, M., Rojo, G., & Martínez-Abella, F. (2018). Alkali-activated slag concrete: Fresh and hardened behaviour. Cement and Concrete Composites, 85, 22–31. https://doi.org/10.1016/J.CEMCONCOMP.2017.10.003
[86] Puligilla, S., & Mondal, P. (2013). Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cement and Concrete Research, 43(1), 70–80. https://doi.org/10.1016/J.CEMCONRES.2012.10.004
[87] Ren, J., Sun, H., Li, Q., Li, Z., Ling, L., Zhang, X., Wang, Y., & Xing, F. (2021). Experimental comparisons between one-part and normal (two-part) alkali-activated slag binders. Construction and Building Materials, 309, 125177. https://doi.org/10.1016/J.CONBUILDMAT.2021.125177
[88] Revathi, T., & Jeyalakshmi, R. (2021). Fly ash–GGBS geopolymer in boron environment: A study on rheology and microstructure by ATR FT-IR and MAS NMR. Construction and Building Materials, 267, 120965. https://doi.org/10.1016/J.CONBUILDMAT.2020.120965
[89] Roy, D. M. (1999). Alkali-activated cements opportunities and challenges. Cement and Concrete Research, 29(2), 249–254. https://doi.org/10.1016/S0008-8846(98)00093-3
[90] Roy, D. M., & Idorn, G. M. (1982). Hydration, structure, and properties of blast furnace slag cements, mortars, and concrete. Journal Proceedings, 79(6), 444-457. https://doi.org/10.14359/10919
[91] Saha, S., & Rajasekaran, C. (2017). Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Construction and Building Materials, 146, 615–620. https://doi.org/10.1016/J.CONBUILDMAT.2017.04.139
[92] Samantasinghar, S., & Singh, S. P. (2019). Synthesis of fly ash-GGBS-blended geopolymer composits. In Geotechnical Characterisation and Geoenvironmental Engineering (pp. 83–91). Singapore: Springer.
[93] Seo, J. H., Park, S. M., Yang, B. J., & Jang, J. G. (2019). Calcined oyster shell powder as an expansive additive in cement mortar. Materials, 12(8), 1322. https://doi.org/10.3390/ma12081322
[94] Shah, S. F. A., Chen, B., Oderji, S. Y., Haque, M. A., & Ahmad, M. R. (2020). Improvement of early strength of fly ash-slag based one-part alkali activated mortar. Construction and Building Materials, 246, 118533. https://doi.org/10.1016/J.CONBUILDMAT.2020.118533
[95] Steinberg, A. (1984). U.S. Patent No. 4,429,545. Washington, DC: U.S. Patent and Trademark Office.
[96] Talkeri, A., & Shankar, A. R. (2022). Alkali activated slag-fly ash concrete incorporating precious slag as fine aggregate for rigid pavements. Journal of Traffic and
Transportation Engineering (English Edition), 9(1), 78-92. https://doi.org/10.1016/j.jtte.2021.05.001
[97] Temuujin, J., van Riessen, A., & Williams, R. (2009). Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of Hazardous Materials, 167(1–3), 82–88. https://doi.org/10.1016/J.JHAZMAT.2008.12.121
[98] Tong, X. C. (2011). Characterization methodologies of thermal management materials. In Advanced materials for thermal management of electronic packaging (pp. 59–129). New York, New York: Springer. https://doi.org/10.1007/978-1-4419-7759-5_2
[99] Vishwakarma, V., & Ramachandran, D. (2018). Green Concrete mix using solid waste and nanoparticles as alternatives – A review. Construction and Building Materials, 162, 96– 103. https://doi.org/10.1016/j.conbuildmat.2017.11.174
[100] Wang, H. Y., Kuo, W. T., Lin, C. C., & Chen, P. Y. (2013). Study of the material properties of fly ash added to oyster cement mortar. Construction and Building Materials, 41, 532–537. https://doi.org/10.1016/J.CONBUILDMAT.2012.11.021
[101] Wang, K. T., Du, L. Q., Lv, X. S., He, Y., & Cui, X. M. (2017). Preparation of drying powder inorganic polymer cement based on alkali-activated slag technology. Powder Technology, 312, 204–209. https://doi.org/10.1016/J.POWTEC.2017.02.036
[102] Wei, T., Zhao, H., & Ma, C. (2021). A comparison of water curing and standard curing on one-part alkali-activated fly ash sinking beads and slag: Properties, microstructure and mechanisms. Construction and Building Materials, 273, 121715. https://doi.org/10.1016/J.CONBUILDMAT.2020.121715
[103] Wilińska, I., & Pacewska, B. (2018). Influence of selected activating methods on hydration processes of mixtures containing high and very high amount of fly ash. Journal of Thermal Analysis and Calorimetry, 133(1), 823–843. https://doi.org/10.1007/s10973-017-6915-y
[104] Yang, B., & Jang, J. G. (2020). Environmentally benign production of one-part alkali- activated slag with calcined oyster shell as an activator. Construction and Building Materials, 257, 119552. https://doi.org/10.1016/J.CONBUILDMAT.2020.119552
[105] Yang, K. H., Song, J. K., Ashour, A. F., & Lee, E. T. (2008). Properties of cementless mortars activated by sodium silicate. Construction and Building Materials, 22(9), 1981– 1989. https://doi.org/10.1016/J.CONBUILDMAT.2007.07.003
[106] Yang, K. H., & Song, J. K. (2009). Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide. Journal of Materials in Civil Engineering, 21(3), 119–127. https://doi.org/10.1061/(asce)0899-1561(2009)21:3(119)
[107] Zajac, M., Skocek, J., Bullerjahn, F., & Haha, M. B. (2016). Effect of retarders on the early hydration of calcium-sulpho-aluminate (CSA) type cements. Cement and Concrete Research, 84, 62–75. https://doi.org/10.1016/J.CEMCONRES.2016.02.014
[108] Zhou, S., Ma, C., Long, G., & Xie, Y. (2020). A novel non-Portland cementitious material: Mechanical properties, durability and characterization. Construction and Building Materials, 238, 117671. https://doi.org/10.1016/J.CONBUILDMAT.2019.117671
[109] Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., ... & Wang, H. (2016). Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production, 125, 253–267. https://doi.org/10.1016/J.JCLEPRO.2016.03.019

無法下載圖示 全文公開日期 2024/09/26 (校內網路)
全文公開日期 2024/09/26 (校外網路)
全文公開日期 2024/09/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE