簡易檢索 / 詳目顯示

研究生: 許程凱
Cheng-Kai Hsu
論文名稱: 石墨烯/氮化硼/熱塑性聚氨酯複合織物應用於智能降溫空調服飾
Graphene/Boron Nitride/Thermoplastic Polyurethane Composite Fabric for Smart Cooling Air Conditioning Clothes
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 92
中文關鍵詞: 石墨烯氮化硼熱塑性聚氨酯導熱係數複合材料複合織物個人降溫服裝
外文關鍵詞: Graphene, Boron Nitride, Thermoplastic Polyurethane, Thermal Conductivity, Composite Material, Composite Fabric, Personal Cooling Garments
相關次數: 點閱:280下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 熱傳導的介紹 3 2.2 熱傳導的機制 6 2.2.1 晶體結構 6 2.2.2 高分子結構 7 2.2.3 複合材料結構 8 2.2.4 分散性對於熱傳導的影響 10 2.3 複合材料的介紹 12 2.3.1 填料與高分子材料 12 2.3.2 石墨烯 16 2.3.3 氮化硼 18 2.4 複合材料的不同製程方式 20 2.4.1 石墨烯/高分子複合薄膜 20 2.4.2 氮化硼/高分子複合薄膜 21 2.4.3 複合織物 23 2.5 當前降溫服裝的發展 25 2.5.1 非電子式冷卻裝置系統 25 2.5.2 電子式冷卻裝置系統 26 第三章 實驗方法 29 3.1 實驗流程圖 29 3.2 實驗材料與設備儀器 30 3.2.1 實驗材料 30 3.2.2 實驗設備 31 3.2.3 實驗分析儀器 33 3.3 實驗方法 35 3.3.1 GNP/BN/TPU懸浮液的製備 35 3.3.2 GNP/BN/TPU/Triton X-100懸浮液的製備 35 3.3.3 GNP/BN/TPU複合薄膜 35 3.3.4 GNP/BN/TPU複合織物 36 第四章 結果與討論 37 4.1 GNP/BN/TPU複合薄膜和複合織物性質 37 4.1.1 GNP/BN/TPU相互作用力 37 4.1.2 選擇適合的分散溶劑 37 4.1.3 GNP和BN於複合薄膜不同比例之導熱係數 38 4.1.4 GNP/BN/TPU不同含量之導熱係數 39 4.1.5 GNP/BN/TPU複合薄膜之SEM圖 41 4.1.6 GNP/BN/TPU複合織物之導熱係數 42 4.1.7 GNP/BN/TPU複合織物之SEM圖 43 4.2 添加分散劑Triton X-100於GNP/BN/TPU懸浮液 46 4.2.1 GNP/BN/TPU/Triton相互作用力 46 4.2.2 GNP/BN/TPU複合薄膜之分散性質與TEM圖 47 4.2.3 GNP/BN/TPU複合薄膜之導熱係數 49 4.2.4 GNP/BN/TPU複合薄膜之SEM圖 50 4.2.5 GNP/BN/TPU複合織物之導熱係數 52 4.2.6 GNP/BN/TPU複合織物之SEM圖 53 4.3 GNP/BN/TPU/Triton X-100複合織物物理特性 55 4.3.1 疲勞測試測試 55 4.3.2 透氣度測試 56 4.3.3 接觸角測試 57 4.3.4 水洗測試 59 4.3.5 FLIR測試 60 第五章 結論 65 第六章 參考文獻 66

[1] Houghton, J. Global warming. Reports on Progress in Physics 2005, 68 (6), 1343.
[2] Bhuiyan, M. A.; Jabeen, M.; Zaman, K.; Khan, A.; Ahmad, J.; Hishan, S. S. The impact of climate change and energy resources on biodiversity loss: Evidence from a panel of selected Asian countries. Renewable Energy 2018, 117, 324-340.
[3] Letcher, T. M. Global warming, greenhouse gases, renewable energy, and storing energy. In Storing Energy, Elsevier, 2022; pp 3-12.
[4] Feng, C.-P.; Yang, L.-Y.; Yang, J.; Bai, L.; Bao, R.-Y.; Liu, Z.-Y.; Yang, M.-B.; Lan, H.-B.; Yang, W. Recent advances in polymer-based thermal interface materials for thermal management: A mini-review. Composites Communications 2020, 22, 100528.
[5] Song, W.; Zhang, Z.; Chen, Z.; Wang, F.; Yang, B. Thermal comfort and energy performance of personal comfort systems (PCS): A systematic review and meta-analysis. Energy and Buildings 2022, 256, 111747.
[6] Taylor, L.; Stevens, C. J.; Thornton, H. R.; Poulos, N.; Chrismas, B. C. Limiting the rise in core temperature during a rugby sevens warm-up with an ice vest. International Journal of Sports Physiology and Performance 2019, 14 (9), 1212-1218.
[7] Shariah, A.; Shalabi, B.; Rousan, A.; Tashtoush, B. Effects of absorptance of external surfaces on heating and cooling loads of residential buildings in Jordan. Energy Conversion and Management 1998, 39 (3-4), 273-284.
[8] Ponmurugan, M.; Ravikumar, M.; Selvendran, R.; Medona, C. M.; Arunraja, K. A review on energy conserving materials for passive cooling in buildings. Materials Today: Proceedings 2022.
[9] Zuo, X.; Zhang, X.; Qu, L.; Miao, J. Smart fibers and textiles for personal thermal management in emerging wearable applications. Advanced Materials Technologies 2023, 8 (6), 2201137.
[10] Kamon, E.; Kenney, W.; Deno, N.; Soto, K.; Carpenter, A. Readdressing personal cooling with ice. American Industrial Hygiene Association Journal 1986, 47 (5), 293-298.
[11] Hou, J.; Yang, Z.; Xu, P.; Huang, G. Design and performance evaluation of novel personal cooling garment. Applied Thermal Engineering 2019, 154, 131-139.
[12] 蕭儒棠. 熱, 熱能, 內能: 自然科學領綱相關概念之學習脈絡與學習困難之探討. 物理教育學刊 2018, 19(2), 11-20.
[13] Maldovan, M. Sound and heat revolutions in phononics. Nature 2013, 503 (7475), 209-217.
[14] Carey, V.; Chen, G.; Grigoropoulos, C.; Kaviany, M.; Majumdar, A. A review of heat transfer physics. Nanoscale and Microscale Thermophysical Engineering 2008, 12 (1), 1-60.
[15] Xie, G.; Ding, D.; Zhang, G. Phonon coherence and its effect on thermal conductivity of nanostructures. Advances in Physics: X 2018, 3 (1), 1480417.
[16] Levenspiel, O. The three mechanisms of heat transfer: Conduction, convection, and radiation. Engineering Flow and Heat Exchange 2014, 179-210.
[17] Sadrehaghighi, I. Classical & Numerical heat transfer with case studies. CFD Open Series 2022; pp 14-16.
[18] Gaspard, P.; Gilbert, T. Heat conduction and Fourier’s law by consecutive local mixing and thermalization. Physical Review Letters 2008, 101 (2), 020601.
[19] Narasimhan, T. N. Fourier's heat conduction equation: History, influence, and connections. Reviews of Geophysics 1999, 37 (1), 151-172.
[20] Kakaç, S.; Yener, Y.; Naveira-Cotta, C. P. Heat conduction; CRC press 2018.
[21] Bonetto, F.; Lebowitz, J. L.; Rey-Bellet, L. Fourier's law: a challenge to theorists. In Mathematical physics 2000, World Scientific, 2000; pp 128-150.
[22] Azme, A.; Islam, S.; Masum, A. K.; Majumder, M. M. H.; Mahbub, T. Design & Construction of an experimental setup for measuring thermal conductivity of versatile range of solid materials. In 2021 IEEE 7th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), 2021; IEEE: pp 10-15.
[23] Chung, D. Materials for thermal conduction. Applied Thermal Engineering 2001, 21 (16), 1593-1605.
[24] Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progress in Polymer Science 2016, 61, 1-28.
[25] Choy, C. Thermal conductivity of polymers. Polymer 1977, 18 (10), 984-1004.
[26] Xu, X.; Chen, J.; Li, B. Phonon thermal conduction in novel 2D materials. Journal of Physics: Condensed Matter 2016, 28 (48), 483001.
[27] Yang, X.; Liang, C.; Ma, T.; Guo, Y.; Kong, J.; Gu, J.; Chen, M.; Zhu, J. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Advanced Composites and Hybrid Materials 2018, 1, 207-230.
[28] Chaudhry, A.; Mabrouk, A.; Abdala, A. Thermally enhanced pristine polyolefins: Fundamentals, progress and prospective. Journal of Materials Research and Technology 2020, 9 (5), 10796-10806.
[29] Tsekmes, I.; Kochetov, R.; Morshuis, P.; Smit, J. Thermal conductivity of polymeric composites: A review. In 2013 IEEE International Conference on Solid Dielectrics (ICSD), 2013; IEEE: pp 678-681.
[30] Kim, G.-H.; Lee, D.; Shanker, A.; Shao, L.; Kwon, M. S.; Gidley, D.; Kim, J.; Pipe, K. P. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nature Materials 2015, 14 (3), 295-300.
[31] Mu, L.; Li, Y.; Mehra, N.; Ji, T.; Zhu, J. Expedited phonon transfer in interfacially constrained polymer chain along self-organized amino acid crystals. ACS Applied Materials & Interfaces 2017, 9 (13), 12138-12145.
[32] Fang, H.; Bai, S.-L.; Wong, C. P. Microstructure engineering of graphene towards highly thermal conductive composites. Composites Part A: Applied Science and Manufacturing 2018, 112, 216-238.
[33] Chirtoc, M.; Horny, N.; Henry, J.-F.; Turgut, A.; Kökey, I.; Tavman, I.; Omastová, M. Photothermal characterization of nanocomposites based on high density polyethylene (HDPE) filled with expanded graphite. International Journal of Thermophysics 2012, 33, 2110-2117.
[34] Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nature Nanotechnology 2010, 5 (4), 251-255.
[35] Kim, H. S.; Jang, J.-u.; Yu, J.; Kim, S. Y. Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes. Composites Part B: Engineering 2015, 79, 505-512.
[36] Zhou, W.; Yu, D.; An, Q. A novel polymeric coating with high thermal conductivity. Polymer-Plastics Technology and Engineering 2009, 48 (12), 1230-1238.
[37] Gojny, F. H.; Wichmann, M. H.; Fiedler, B.; Kinloch, I. A.; Bauhofer, W.; Windle, A. H.; Schulte, K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 2006, 47 (6), 2036-2045.
[38] Huang, C.; Qian, X.; Yang, R. Thermal conductivity of polymers and polymer nanocomposites. Materials Science and Engineering: R: Reports 2018, 132, 1-22.
[39] Li, Y.; Wang, Y.; Chen, P.; Xia, R.; Wu, B.; Qian, J. Interfacial modulation of graphene by polythiophene with controlled molecular weight to enhance thermal conductivity. Membranes 2021, 11 (11), 895.
[40] Guo, Y.; Ruan, K.; Shi, X.; Yang, X.; Gu, J. Factors affecting thermal conductivities of the polymers and polymer composites: A review. Composites Science and Technology 2020, 193, 108134.
[41] Yu, W.; Xie, H.; Yin, L.; Zhao, J.; Xia, L.; Chen, L. Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina. International Journal of Thermal Sciences 2015, 91, 76-82.
[42] Zhang, W.-b.; Zhang, Z.-x.; Yang, J.-h.; Huang, T.; Zhang, N.; Zheng, X.-t.; Wang, Y.; Zhou, Z.-w. Largely enhanced thermal conductivity of poly (vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide. Carbon 2015, 90, 242-254.
[43] Gu, J.; Ruan, K. Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Letters 2021, 13, 1-9.
[44] Guo, H.; Liu, J.; Wang, Q.; Liu, M.; Du, C.; Li, B.; Feng, L. High thermal conductive poly (vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance. Composites Science and Technology 2019, 181, 107713.
[45] Li, C.; Liu, B.; Gao, Z.; Wang, H.; Liu, M.; Wang, S.; Xiong, C. Electrically insulating ZnOs/ZnOw/silicone rubber nanocomposites with enhanced thermal conductivity and mechanical properties. Journal of Applied Polymer Science 2018, 135 (27), 46454.
[46] Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science 2017, 90, 75-127.
[47] Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P. Recent advances on graphene quantum dots: from chemistry and physics to applications. Advanced Materials 2019, 31 (21), 1808283.
[48] Rathinavel, S.; Priyadharshini, K.; Panda, D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Materials Science and Engineering: B 2021, 268, 115095.
[49] von Reitzenstein, N. H.; Baghirzade, B. S.; Pruitt, E.; Hristovski, K.; Westerhoff, P.; Apul, O. G. Comparing the morphologies and adsorption behavior of electrospun polystyrene composite fibers with 0D fullerenes, 1D multiwalled carbon nanotubes and 2D graphene oxides. Chemical Engineering Journal Advances 2022, 9, 100199.
[50] Geim, A. K.; Novoselov, K. S. The rise of graphene. Nature Materials 2007, 6 (3), 183-191.
[51] Tiwari, S. K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices 2020, 5 (1), 10-29.
[52] Tiwari, S. K.; Kumar, V.; Huczko, A.; Oraon, R.; Adhikari, A. D.; Nayak, G. Magical allotropes of carbon: prospects and applications. Critical Reviews in Solid State and Materials Sciences 2016, 41 (4), 257-317.
[53] Balmain, W. XLVI. Observations on the formation of compounds of boron and silicon with nitrogen and certain metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1842, 21 (138), 270-277.
[54] Roy, S.; Zhang, X.; Puthirath, A. B.; Meiyazhagan, A.; Bhattacharyya, S.; Rahman, M. M.; Babu, G.; Susarla, S.; Saju, S. K.; Tran, M. K. Structure, properties and applications of two‐dimensional hexagonal boron nitride. Advanced Materials 2021, 33 (44), 2101589.
[55] Wang, J.; Ma, F.; Sun, M. Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Advances 2017, 7 (27), 16801-16822.
[56] Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chemical Society Reviews 2014, 43 (3), 934-959.
[57] Li, Y.; Porwal, H.; Huang, Z.; Zhang, H.; Bilotti, E.; Peijs, T. Enhanced thermal and electrical properties of polystyrene-graphene nanofibers via electrospinning. Journal of Nanomaterials 2016, 2016.
[58] Yu, J.; Cha, J. E.; Kim, S. Y. Thermally conductive composite film filled with highly dispersed graphene nanoplatelets via solvent-free one-step fabrication. Composites Part B: Engineering 2017, 110, 171-177.
[59] Chen, J.; Huang, X.; Sun, B.; Jiang, P. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 2018, 13 (1), 337-345.
[60] Zhao, L.; Yan, L.; Wei, C.; Li, Q.; Huang, X.; Wang, Z.; Fu, M.; Ren, J. Synergistic enhanced thermal conductivity of epoxy composites with boron nitride nanosheets and microspheres. The Journal of Physical Chemistry C 2020, 124 (23), 12723-12733.
[61] Wang, F.; Cai, X. Improvement of mechanical properties and thermal conductivity of carbon fiber laminated composites through depositing graphene nanoplatelets on fibers. Journal of Materials Science 2019, 54 (5), 3847-3862.
[62] Li, Y.; Zhang, H.; Liu, Y.; Wang, H.; Huang, Z.; Peijs, T.; Bilotti, E. Synergistic effects of spray-coated hybrid carbon nanoparticles for enhanced electrical and thermal surface conductivity of CFRP laminates. Composites Part A: Applied Science and Manufacturing 2018, 105, 9-18.
[63] Ebi, K. L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R. S.; Ma, W.; Malik, A. Hot weather and heat extremes: Health risks. The Lancet 2021, 398 (10301), 698-708.
[64] Sajjad, U.; Hamid, K.; Sultan, M.; Abbas, N.; Ali, H. M.; Imran, M.; Muneeshwaran, M.; Chang, J.-Y.; Wang, C.-C. Personal thermal management-A review on strategies, progress, and prospects. International Communications in Heat and Mass Transfer 2022, 130, 105739.
[65] Ren, S.; Han, M.; Fang, J. Personal cooling garments: A Review. Polymers 2022, 14 (24), 5522.
[66] Zare, M.; Dehghan, H.; Yazdanirad, S.; Khoshakhlagh, A. H. Comparison of the impact of an optimized ice cooling vest and a paraffin cooling vest on physiological and perceptual strain. Safety and Health at Work 2019, 10 (2), 219-223.
[67] Yousefi, S.; Jamekhorshid, A.; Tahmasebi, S.; Sadrameli, S. M. Experimental and numerical performance evaluation of a cooling vest subtending phase change material under the extremely hot and humid environment. Thermal Science and Engineering Progress 2021, 26, 101103.
[68] Ni, X.; Yao, T.; Zhang, Y.; Zhao, Y.; Hu, Q.; Chan, A. P. Experimental study on the efficacy of a novel personal cooling vest incorporated with phase change materials and fans. Materials 2020, 13 (8), 1801.
[69] Lou, L.; Shou, D.; Park, H.; Zhao, D.; Wu, Y. S.; Hui, X.; Yang, R.; Kan, E. C.; Fan, J. Thermoelectric air conditioning undergarment for personal thermal management and HVAC energy saving. Energy and Buildings 2020, 226, 110374.
[70] Yang, F.; Lan, C.; Zhang, H.; Guan, J.; Zhang, F.; Fei, B.; Zhang, J. Study on graphene/CNC-coated bamboo pulp fabric preparation of fabrics with thermal conductivity. Polymers 2019, 11 (8), 1265.
[71] Shi, Z.; Zhang, C.; Chen, X.-G.; Li, A.; Zhang, Y.-F. Thermal, mechanical and electrical properties of carbon fiber fabric and graphene reinforced segmented polyurethane composites. Nanomaterials 2021, 11 (5), 1289.
[72] Martinez-Rubi, Y.; Ashrafi, B.; Jakubinek, M. B.; Zou, S.; Kim, K. S.; Cho, H.; Simard, B. Nanocomposite fabrics with high content of boron nitride nanotubes for tough and multifunctional composites. Journal of Materials Research 2022, 1-13.

無法下載圖示 全文公開日期 2033/08/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE