簡易檢索 / 詳目顯示

研究生: JANUAR WIDAKDO
JANUAR WIDAKDO
論文名稱: 自組裝電響應石墨烯-高分子薄膜用於可控及可切換的氣體分離機制
Self-assembling electrically responsive graphene-polymer membranes for controlled and switchable gas separation mechanism
指導教授: 洪維松
Wei-Song Hung
賴君義
Juin-Yih Lai
口試委員: Kueir-Rarn Lee
Kueir-Rarn Lee
Da Ming Wang
Da Ming Wang
Ying Ling Liu
Ying Ling Liu
Chien-Chieh Hu
Chien-Chieh Hu
Chih-Feng Wang
Chih-Feng Wang
Hsieh-Chih Tsai
Hsieh-Chih Tsai
Chung Tai-Shung
Chung Tai-Shung
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 168
中文關鍵詞: PVDF β相電響應薄膜可調節模式氣體分離機制石墨烯 Polydopamine離子液
外文關鍵詞: β-phase of PVDF, Electro responsive membranes, Switchable, Selective gas separation mechanism, Graphene, Polydopamine
相關次數: 點閱:501下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,刺激響應材料因具有隨外部刺激改變材料特性的能力,在各個領域皆受到重視,其中包含氣體分離相關研究。在響應性材料中,以電能作為刺激源格外受到矚目,乃因其具備快速、非入侵性等特質。電響應材料在節能方面亦有極大的潛能,即便電響應材料含括上述多項優點,但在薄膜領域的研究仍非常少,更不用說應用在氣體分離的電響應材料,本文旨在探討電響應材料用於CO2氣體分離。
本文利用自組裝的(PG), (PVDF/G-PDA) 與 PVDF/Graphene-ion liquid進行一系列CO2氣體分離實驗。在PVDF/Graphene中加入10wt%離子液(BMIM)(BF4),可發現PVDF的β相增加79.84%。此外,他們擁有高導電率和電容率,分別為15.10×10¬-3 S/cm和0.63×10-9F。薄膜中的氣體通道可隨著施加的外部電壓調整,使單一張膜具分離不同氣體的能力,而CO2的選擇性和滲透率會隨電壓的增加而上升。這些薄膜對於CO2的最大滲透率和選擇率分別為193.55 Barrier與129.03。根據DFT模擬,在系統中CO2較偏向吸引,而O2和N2較偏向排斥。總的來說,調節氣體通道內的自由體積和分子間作用力,讓通道成為分子篩來增加選擇性。本研究為下一代的響應性薄膜開創一個全新的領域。


In recent years, stimuli-responsive materials have garnered interest due to their ability to change properties when exposed to external stimuli, making them useful for various applications, including gas separation. Electricity is a very attractive trigger for responsive materials due to its speedy and non-invasive nature and the potential to reduce energy costs significantly. Even though electric volt is deemed an appealing stimulus for the development of stimuli-responsive materials, this avenue has yet to be extensively researched, as evidenced by the fewer works done on the electro-responsive membranes. Of these, there is even less research done on electro-responsive materials for gas separation. Thus, we have conducted some of the research that answers the criteria.
This dissertation covers the utilization of electro-responsive materials specifically for CO2 gas separation purposes. We self-assembled PVDF-Graphene (PG), PVDF/Graphene-Polydopamine (PVDF/G-PDA), and PVDF/Graphene-Ionic liquid membranes. The results obtained are using PVDF-Graphene with [BMIM][BF4] Ionic liquid (PG-BF410wt%). The β-phase percentage increases by about 79.84%, which displays a unique self-piezoelectric property. Additionally, those membranes exhibit excellent electrical conductivity and unique capacitive properties about 15.10 x 10-3 S/cm and 0.63 x 10-9 F. The resultant of interface channels in the membrane can be reversibly adjusted by external voltage applications (3 Volt), resulting in the tailored gas selectivity of a single membrane. Applying a voltage to the membrane, the permeability and selectivity toward CO2 increase simultaneously. Those membranes achieved the highest CO2 permeability and CO2/N2 selectivity about 193.55 Barrer and 129.03. Based on Density Functional Theory (DFT) simulation, CO2 has more attraction (adsorption takes place). However, O2 and N2 have repulsion (no adsorption) in the system. Overall, tuning the free volume and molecular interactions within the channels provides a rational molecular sieving approach to improve membrane selectivity. This research opens new avenues for the development of a new generation of responsive membranes.

ABSTRACT i 摘 要 iii CERTIFICATE iv DECLARATION v ACKNOWLEDGEMENT vi TABLE OF CONTENTS viii LIST OF FIGURES x LIST OF TABLES xv LIST OF ABBREVIATIONS xvi CHAPTER 1 1 1.1 INTRODUCTION 2 1.2 DISSERTATION GOALS AND OUTLINE 4 CHAPTER 2 7 2.1 MEMBRANE GAS SEPARATION MATERIAL SCIENCE PROGRESS 8 2.2 PERMEABILITY AND SELECTIVITY 11 2.3 TRADITIONAL MEMBRANE FOR GAS SEPARATION 14 2.3.1 Polymer (organic-inorganic) membrane 14 2.3.2 Mixed matrix membrane 15 2.3.3 Supported Ionic Liquid Membranes 17 2.4 RESPONSIVE AND SWITCHABLE MEMBRANE FOR GAS SEPARATION 18 2.5 MECHANISM OF ELECTRICAL-RESPONSIVE MEMBRANES 21 2.6 POLYVINYLIDENE FLUORIDE (PVDF) 22 2.7 GRAPHENE 24 2.8 POLYDOPAMINE 25 2.9 IONIC LIQUID 27 CHAPTER 3 Mechanism of A Self-Assembling Smart and Electrically Responsive PVDF-Graphene Membrane for Controlled Gas Separation 28 3.1 INTRODUCTION 29 3.2 EXPERIMENTAL SECTION 31 3.2.1 Materials 31 3.2.2 Fabrication of PVDF-Graphene Membranes 32 3.2.3 Characterization of the PVDF-Graphene Membranes 32 3.2.4 Switchable Gas Separation Performance of PVDF-Graphene Membranes 33 3.2.5 Determination of Free Volume 34 3.3 RESULTS AND DISCUSSION 35 3.3.1 Characterization of Graphene Sheets 35 3.3.2 Structural Morphology of PVDF-Graphene Membranes 36 3.3.3 Physicochemical Characterization of PVDF-Graphene Membranes 37 3.3.4 Electrical Properties of the PVDF-Graphene Membranes 43 3.3.5 Switchable Gas Separation Performance of the PVDF-Graphene Membranes 46 3.4 SUMMARY 53 CHAPTER 4 Tailoring of Graphene–Organic Frameworks Membrane to Enable Reversed Electrical-Switchable Permselectivity in CO2 Separation 55 4.1 INTRODUCTION 56 4.2 MATERIALS AND METHODS 59 4.2.1 Materials 59 4.2.2 Synthesis of Graphene-Polydopaminex (G-PDAx) composite powder 59 4.2.3 Fabrication of the smart graphene–organic frameworks membranes 60 4.2.4 Membrane Characterizations 61 4.2.5 Membrane separation performance 62 4.2.6 Digital Image Correlation (DIC) of membranes by Optical Microscope 63 4.3 RESULTS AND DISCUSSION 64 4.3.1 Characterization of the Graphene-Polydopamine (G-PDAx) composite 64 4.3.2 Morphological Characterization of the PVDF/(G-PDAx) Membranes 67 4.3.3 Mechanical and Physicochemical Characterization of the PVDF/(G-PDAx) Membranes 70 4.3.4 Electrical Properties of the PVDF/(G-PDAx) Membranes 80 4.3.5 Reversed Electrical-switchablilty of the PVDF/(G-PDAx) Membranes 82 4.4 SUMMARY 93 CHAPTER 5 Electric-Switchable Smart Ionic Liquid Molecular Sieving Membranes with Tunable and Enhanced Gas Separation Performance 94 5.1 INTRODUCTION 95 5.2 EXPERIMENTAL SECTION 98 5.2.1 Materials 98 5.2.2 Fabrication of the PG-Ionic liquid membranes 99 5.2.3 Characterization of the PG-Ionic liquid membranes 100 5.2.4 Controlled Gas Separation Performance of the PG-Ionic liquid membranes 101 5.2.5 Density Function Theory Simulation of Adsorption of CO2 and O2 on the Graphene with PVDF, BMIM, BF4, and BF6 system 102 5.3 RESULTS AND DISCUSSION 104 5.3.1 Physical and chemical test of PG-Ionic liquid membranes 104 5.3.2 Mechanical and electrical characterization of PG-Ionic liquid membranes 117 5.3.3 Tunable and electric-controllable membrane permeation 121 5.3.4 Density Function Theory Simulation 125 5.4 SUMMARY 127 CHAPTER 6 129 6.1 CONCLUSIONS 130 6.2 FUTURE PERSPECTIVE 131 6.3 LIST OF PUBLICATIONS 132 6.4 ACHIEVENEMT 132 REFERENCES 133

(1) Karbalaei Mohammad, N.; Ghaemi, A.; Tahvildari, K.; Sharif, A. A. M. Experimental investigation and modeling of CO2 adsorption using modified activated carbon. Iranian Journal of Chemistry Chemical Engineering 2020, 39 (1), 177-192, DOI: 10.30492/IJCCE.2020.37648.
(2) Arti, M.; Youn, M. H.; Park, K. T.; Kim, H. J.; Kim, Y. E.; Jeong, S. K. Single Process for CO2 Capture and Mineralization in Various Alkanolamines Using Calcium Chloride. Energ Fuel 2017, 31 (1), 763-769, DOI: 10.1021/acs.energyfuels.6b02448.
(3) Cui, G.; Wang, J.; Zhang, S. Active chemisorption sites in functionalized ionic liquids for carbon capture. Chem Soc Rev 2016, 45 (15), 4307-39, DOI: 10.1039/c5cs00462d.
(4) Zanganeh, K. E.; Shafeen, A.; Salvador, C. CO2 capture and development of an advanced pilot-scale cryogenic separation and compression unit. Energy Procedia 2009, 1 (1), 247-252, DOI: 10.1016/j.egypro.2009.01.035.
(5) Shanbhag, B. K.; Liu, B.; Fu, J.; Haritos, V. S.; He, L. Self-Assembled Enzyme Nanoparticles for Carbon Dioxide Capture. Nano Lett 2016, 16 (5), 3379-84, DOI: 10.1021/acs.nanolett.6b01121.
(6) Chawla, M.; Saulat, H.; Masood Khan, M.; Mahmood Khan, M.; Rafiq, S.; Cheng, L.; Iqbal, T.; Rasheed, M. I.; Farooq, M. Z.; Saeed, M. Membranes for CO2/CH4 and CO2/N2 gas separation. Chemical Engineering Technology 2020, 43 (2), 184-199, DOI: 10.1002/ceat.201900375.
(7) Freeman, B. D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 1999, 32 (2), 375-380, DOI: DOI 10.1021/ma9814548.
(8) Marković, A.; Stoltenberg, D.; Enke, D.; Schlünder, E.-U.; Seidel-Morgenstern, A. Gas permeation through porous glass membranes: Part I. Mesoporous glasses—effect of pore diameter and surface properties. J Membrane Sci 2009, 336 (1-2), 17-31, DOI: 10.1016/j.memsci.2009.02.031.
(9) Liu, Z.; Wang, W.; Xie, R.; Ju, X. J.; Chu, L. Y. Stimuli-responsive smart gating membranes. Chem Soc Rev 2016, 45 (3), 460-75, DOI: 10.1039/c5cs00692a.
(10) Prasetya, N.; Himma, N. F.; Sutrisna, P. D.; Wenten, I. G.; Ladewig, B. P. A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chemical Engineering Journal 2020, 391, 123575, DOI: 10.1016/j.cej.2019.123575.
(11) Olajire, A. A. CO2 capture and separation technologies for end-of-pipe applications–a review. Energy 2010, 35 (6), 2610-2628, DOI: 10.1016/j.energy.2010.02.030.
(12) Desideri, U.; Corbelli, R. CO2 capture in small size cogeneration plants: Technical and economical considerations. Energ Convers Manage 1998, 39 (9), 857-867, DOI: Doi 10.1016/S0196-8904(97)10050-4.
(13) Audus, H. In Leading options for the capture of CO2 at power stations, Proceedings of the fifth international conference on greenhouse gas control technologies, Cairns, Australia, Citeseer: 2000; p 16.
(14) Rubin, E. S.; Mantripragada, H.; Marks, A.; Versteeg, P.; Kitchin, J. The outlook for improved carbon capture technology. Progress in energy combustion science 2012, 38 (5), 630-671, DOI: 10.1016/j.pecs.2012.03.003.
(15) MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; Adjiman, C. S.; Williams, C. K.; Shah, N.; Fennell, P. An overview of CO2 capture technologies. Energy Environmental Science 2010, 3 (11), 1645-1669, DOI: 10.1039/C004106H.
(16) Hägg, M.-B.; Lindbråthen, A. CO2 capture from natural gas fired power plants by using membrane technology. Industrial engineering chemistry research 2005, 44 (20), 7668-7675, DOI: 10.1021/ie050174v.
(17) Basu, S.; Khan, A. L.; Cano-Odena, A.; Liu, C.; Vankelecom, I. F. Membrane-based technologies for biogas separations. Chemical Society Reviews 2010, 39 (2), 750-768, DOI: 10.1039/B817050A
(18) Mondal, M. K.; Balsora, H. K.; Varshney, P. Progress and trends in CO2 capture/separation technologies: A review. Energy 2012, 46 (1), 431-441, DOI: 10.1016/j.energy.2012.08.006Get.
(19) Leung, D. Y.; Caramanna, G.; Maroto-Valer, M. M. An overview of current status of carbon dioxide capture and storage technologies. Renewable Sustainable Energy Reviews 2014, 39, 426-443, DOI: 10.1016/j.rser.2014.07.093.
(20) Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E. Membrane technologies for CO2 separation. J Membrane Sci 2010, 359 (1-2), 115-125.
(21) Vinoba, M.; Bhagiyalakshmi, M.; Alqaheem, Y.; Alomair, A. A.; Perez, A.; Rana, M. S. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review. Sep Purif Technol 2017, 188, 431-450, DOI: 10.1016/j.seppur.2017.07.051.
(22) Baker, R. W. Membrane technology and applications, John Wiley & Sons: 2012.
(23) Freeman, B.; Yampolskii, Y.; Pinnau, I. Materials science of membranes for gas and vapor separation, John Wiley & Sons: 2006.
(24) Paul, D. R. Polymeric gas separation membranes, CRC press: 2018.
(25) Wijmans, J. G.; Baker, R. W. The Solution-Diffusion Model - a Review. J Membrane Sci 1995, 107 (1-2), 1-21, DOI: 10.1016/0376-7388(95)00102-I.
(26) Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nature Reviews Materials 2017, 2 (8), 1-16, DOI: 10.1038/natrevmats.2017.45.
(27) Henis, J. M. Commercial and practical aspects of gas separation membranes. In Polymeric gas separation membranes; CRC Press: 2018; pp 441-512.
(28) Bernardo, P.; Clarizia, G. 30 years of membrane technology for gas separation. Chemical engineering transactions 2013, 32, 1999-2004, DOI: 10.3303/CET1332334.
(29) Sanders, D. F.; Smith, Z. P.; Guo, R.; Robeson, L. M.; McGrath, J. E.; Paul, D. R.; Freeman, B. D. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer 2013, 54 (18), 4729-4761, DOI: 10.1016/j.polymer.2013.05.075.
(30) Xu, Z.-K.; Huang, X.-J.; Wan, L.-S. Surface engineering of polymer membranes, Springer Science & Business Media: 2009.
(31) Visser, T.; Masetto, N.; Wessling, M. Materials dependence of mixed gas plasticization behavior in asymmetric membranes. J Membrane Sci 2007, 306 (1-2), 16-28, DOI: 10.1016/j.memsci.2007.07.048.
(32) Jiang, L.; Chung, T.-S.; Li, D. F.; Cao, C.; Kulprathipanja, S. Fabrication of Matrimid/polyethersulfone dual-layer hollow fiber membranes for gas separation. J Membrane Sci 2004, 240 (1-2), 91-103, DOI: 10.1016/j.memsci.2004.04.015.
(33) Hosseini, S. S.; Peng, N.; Chung, T. S. Gas separation membranes developed through integration of polymer blending and dual-layer hollow fiber spinning process for hydrogen and natural gas enrichments. J Membrane Sci 2010, 349 (1-2), 156-166, DOI: 10.1016/j.memsci.2009.11.043.
(34) Liu, Y.; Chung, T.-S.; Wang, R.; Li, D. F.; Chng, M. L. Chemical cross-linking modification of polyimide/poly (ether sulfone) dual-layer hollow-fiber membranes for gas separation. Ind. Eng. Chem. Res. 2003, 42 (6), 1190-1195, DOI: 10.1021/ie020750c.
(35) Kim, K.-J.; Park, S.-H.; So, W.-W.; Ahn, D.-J.; Moon, S.-J. CO2 separation performances of composite membranes of 6FDA-based polyimides with a polar group. J Membrane Sci 2003, 211 (1), 41-49, DOI: 10.1016/S0376-7388(02)00316-2.
(36) Cao, C.; Wang, R.; Chung, T. S.; Liu, Y. Formation of high-performance 6FDA-2, 6-DAT asymmetric composite hollow fiber membranes for CO2/CH4 separation. J Membrane Sci 2002, 209 (1), 309-319, DOI: 10.1016/S0376-7388(02)00359-9.
(37) Syrtsova, D.; Kharitonov, A.; Teplyakov, V.; Koops, G.-H. Improving gas separation properties of polymeric membranes based on glassy polymers by gas phase fluorination. Desalination 2004, 163 (1-3), 273-279, DOI: 10.1016/S0011-9164(04)90200-7.
(38) Chung, T. S.; Jiang, L. Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 2007, 32 (4), 483-507, DOI: 10.1016/j.progpolymsci.2007.01.008.
(39) Abetz, V.; Brinkmann, T.; Dijkstra, M.; Ebert, K.; Fritsch, D.; Ohlrogge, K.; Paul, D.; Peinemann, K. V.; Nunes, S. P.; Scharnagl, N.; Schossig, M. Developments in membrane research: from material via process design to industrial application. Advanced Engineering Materials 2006, 8 (5), 328-358, DOI: 10.1002/adem.200600032.
(40) Hillock, A. M.; Miller, S. J.; Koros, W. J. Crosslinked mixed matrix membranes for the purification of natural gas: effects of sieve surface modification. J Membrane Sci 2008, 314 (1-2), 193-199, DOI: 10.1016/j.memsci.2008.01.046.
(41) Li, Y.; Liang, F.; Bux, H.; Yang, W.; Caro, J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J Membrane Sci 2010, 354 (1-2), 48-54, DOI: 10.1016/j.memsci.2010.02.074.
(42) Aroon, M.; Ismail, A.; Montazer-Rahmati, M.; Matsuura, T. Effect of chitosan as a functionalization agent on the performance and separation properties of polyimide/multi-walled carbon nanotubes mixed matrix flat sheet membranes. J Membrane Sci 2010, 364 (1-2), 309-317, DOI: 10.1016/j.memsci.2010.08.023.
(43) Bae, T. H.; Lee, J. S.; Qiu, W.; Koros, W. J.; Jones, C. W.; Nair, S. A high‐performance gas‐separation membrane containing submicrometer‐sized metal–organic framework crystals. Angewandte Chemie 2010, 122 (51), 10059-10062, DOI: 10.1002/ange.201006141.
(44) Goh, P. S.; Ng, B. C.; Ismail, A. F.; Sanip, S. M.; Aziz, M.; Kassim, M. A. Effect of Dispersed Multi-Walled Carbon Nanotubes on Mixed Matrix Membrane for O2/N2 Separation. Sep Sci Technol 2011, 46 (8), 1250-1261, DOI: 10.1080/01496395.2011.554952.
(45) Santos, E.; Albo, J.; Irabien, A. Acetate based supported ionic liquid membranes (SILMs) for CO2 separation: Influence of the temperature. J Membrane Sci 2014, 452, 277-283, DOI: 10.1016/j.memsci.2013.10.024.
(46) Gan, Q.; Rooney, D.; Zou, Y. Supported ionic liquid membranes in nanopore structure for gas separation and transport studies. Desalination 2006, 199 (1-3), 535-537, DOI: 10.1016/j.desal.2006.03.122.
(47) Scovazzo, P.; Kieft, J.; Finan, D. A.; Koval, C.; DuBois, D.; Noble, R. Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes. J Membrane Sci 2004, 238 (1-2), 57-63, DOI: 10.1016/j.memsci.2004.02.033.
(48) Tomé, L. C.; Patinha, D. J.; Freire, C. S.; Rebelo, L. P. N.; Marrucho, I. M. CO2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes. Rsc Advances 2013, 3 (30), 12220-12229, DOI: 10.1039/C3RA41269E.
(49) Cserjesi, P.; Nemestothy, N.; Belafi-Bako, K. Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids. J Membrane Sci 2010, 349 (1-2), 6-11, DOI: 10.1016/j.memsci.2009.10.044.
(50) Parhi, P. K. Supported Liquid Membrane Principle and Its Practices: A Short Review. Journal of Chemistry 2013, 2013, DOI: 10.1155/2013/618236.
(51) Danesi, P. R. Separation of metal species by supported liquid membranes. Separation Science Technology 1984, 19 (11-12), 857-894, DOI: 10.1080/01496398408068598.
(52) Scovazzo, P.; Visser, A. E.; Davis Jr, J. H.; Rogers, R. D.; Koval, C. A.; DuBois, D. L.; Noble, R. D. Supported ionic liquid membranes and facilitated ionic liquid membranes. ACS Publications: 2002; pp.69-87.
(53) Teramoto, M.; Huang, Q.; Watari, T.; Tokunaga, Y.; Nakatani, R.; Maeda, T.; Matsuyama, H. Facilitated Transport of CO2 through Supported Liquid Membranes of Various Amine Solutions—Effects of Rate and Equilibrium of Reaction between CO2 and Amine—. Journal of chemical engineering of Japan 1997, 30 (2), 328-335, DOI: 10.1252/jcej.30.328.
(54) Neves, L. A.; Crespo, J. G.; Coelhoso, I. M. Gas permeation studies in supported ionic liquid membranes. J Membrane Sci 2010, 357 (1-2), 160-170, DOI: 10.1016/j.memsci.2010.04.016.
(55) Luzinov, I.; Minko, S.; Tsukruk, V. V. Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 2004, 29 (7), 635-698, DOI: 10.1016/j.progpolymsci.2004.03.001.
(56) Minko, S. Responsive polymer brushes. Journal of Macromolecular Science, Part C: Polymer Reviews 2006, 46 (4), 397-420, DOI: 10.1080/15583720600945402.
(57) Kwon, T.; Chun, J. ON/OFF Switchable Nanocomposite Membranes for Separations. Polymers 2020, 12 (10), 2415, DOI: 10.3390/polym12102415
(58) Zhu, H. Interfacial preparation of ferroelectric polymer nanostructures for electronic applications. Polymer Journal 2021, 1-10, DOI: 10.1038/s41428-021-00491-1.
(59) Khalifa, M.; Mahendran, A.; Anandhan, S. Probing the synergism of halloysite nanotubes and electrospinning on crystallinity, polymorphism and piezoelectric performance of poly(vinylidene fluoride). Rsc Advances 2016, 6 (115), 114052-114060, DOI: 10.1039/c6ra20599b.
(60) Wang, A.; Chen, C.; Liao, L.; Qian, J.; Yuan, F.-G.; Zhang, N. Enhanced β-phase in direct ink writing PVDF thin films by intercalation of Graphene. Journal of Inorganic Organometallic Polymers Materials & Design 2020, 30 (5), 1497-1502, DOI: 10.1007/s10904-019-01310-0.
(61) Sousa, R. E.; Kundu, M.; Goren, A.; Silva, M. M.; Liu, L. F.; Costa, C. M.; Lanceros-Mendez, S. Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion. Rsc Advances 2015, 5 (110), 90428-90436, DOI: 10.1039/c5ra19335d.
(62) Liu, Z. H.; Pan, C. T.; Lin, L. W.; Lai, H. W. Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sensor Actuat a-Phys 2013, 193, 13-24, DOI: 10.1016/j.sna.2013.01.007.
(63) Daneshmandi, L.; Barajaa, M.; Tahmasbi Rad, A.; Sydlik, S. A.; Laurencin, C. T. Graphene‐Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Advanced Healthcare Materials 2021, 10 (1), 2001414, DOI: 10.1002/adhm.202001414.
(64) Shao, L.; Wang, Z. X.; Zhang, Y. L.; Jiang, Z. X.; Liu, Y. Y. A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. J Membrane Sci 2014, 461, 10-21, DOI: 10.1016/j.memsci.2014.03.006.
(65) Luo, C.; Liu, W.; Luo, B.; Tian, J.; Wen, W.; Liu, M.; Zhou, C. Antibacterial activity and cytocompatibility of chitooligosaccharide-modified polyurethane membrane via polydopamine adhesive layer. Carbohydr Polym 2017, 156, 235-243, DOI: 10.1016/j.carbpol.2016.09.036.
(66) Hebbar, R. S.; Isloor, A. M.; Ananda, K.; Ismail, A. F. Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal. Journal of Materials Chemistry A 2016, 4 (3), 764-774, DOI: 10.1039/c5ta09281g.
(67) Zhang, D.; Li, W.; Ma, Z. Improved sandwich-format electrochemical immunosensor based on “smart” SiO2@ polydopamine nanocarrier. Biosensors Bioelectronics 2018, 109, 171-176, DOI: 10.1016/j.bios.2018.03.027.
(68) Xin, Q.; Li, Z.; Li, C.; Wang, S.; Jiang, Z.; Wu, H.; Zhang, Y.; Yang, J.; Cao, X. Enhancing the CO2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. Journal of Materials Chemistry A 2015, 3 (12), 6629-6641, DOI: 10.1039/C5TA00506J.
(69) Mukherjee, S.; Kumar, A.; Zaworotko, M. J. Metal-organic framework based carbon capture and purification technologies for clean environment. In Metal-organic frameworks (MOFs) for environmental applications; Elsevier: 2019; pp 5-61.
(70) Ahmad, N.; Noh, A. M.; Leo, C.; Ahmad, A.; Design. CO2 removal using membrane gas absorption with PVDF membrane incorporated with POSS and SAPO-34 zeolite. Chemical Engineering Research 2017, 118, 238-247, DOI: 10.1016/j.cherd.2016.12.019.
(71) Dong, X.; Wu, H.-C.; Lin, Y. CO2 permeation through asymmetric thin tubular ceramic-carbonate dual-phase membranes. J Membrane Sci 2018, 564, 73-81, DOI: 10.1016/j.memsci.2018.07.012.
(72) Zhao, D.; Wu, Y. D.; Ren, J. Z.; Li, H.; Qiu, Y. T.; Deng, M. C. Improved CO2 separation performance of composite membrane with the aids of low-temperature plasma treatment. J Membrane Sci 2019, 570, 184-193, DOI: 10.1016/j.memsci.2018.10.051.
(73) Singh, G.; Lakhi, K. S.; Kim, I. Y.; Kim, S.; Srivastava, P.; Naidu, R.; Vinu, A. Highly Efficient Method for the Synthesis of Activated Mesoporous Biocarbons with Extremely High Surface Area for High-Pressure CO2 Adsorption. ACS Appl Mater Interfaces 2017, 9 (35), 29782-29793, DOI: 10.1021/acsami.7b08797.
(74) Joglekar, M.; Itta, A. K.; Kumar, R.; Wenz, G. B.; Mayne, J.; Williams, P. J.; Koros, W. J. Carbon molecular sieve membranes for CO2/N2 separations: Evaluating subambient temperature performance. J Membrane Sci 2019, 569, 1-6, DOI: 10.1016/j.memsci.2018.10.003.
(75) Rosli, A.; Ahmad, A. L.; Low, S. C. Anti-wetting polyvinylidene fluoride membrane incorporated with hydrophobic polyethylene-functionalized-silica to improve CO2 removal in membrane gas absorption. Sep Purif Technol 2019, 221, 275-285, DOI: 10.1016/j.seppur.2019.03.094.
(76) Chen, T. J.; Wang, Z. G.; Das, S.; Liu, L. N.; Li, Y. D.; Kawi, S.; Lin, Y. S. A novel study of sulfur-resistance for CO2 separation through asymmetric ceramic-carbonate dual-phase membrane at high temperature. J Membrane Sci 2019, 581, 72-81, DOI: 10.1016/j.memsci.2019.03.021.
(77) Xing, W.; Li, Z. A.; Peters, T.; Fontaine, M. L.; McCann, M.; Evans, A.; Norby, T.; Bredesen, R. Improved CO2 flux by dissolution of oxide ions into the molten carbonate phase of dual-phase CO2 separation membranes. Sep Purif Technol 2019, 212, 723-727, DOI: 10.1016/j.seppur.2018.11.090.
(78) Lee, H. J.; Park, Y. G.; Kim, M. K.; Lee, S. H.; Park, J. H. Study on CO2 absorption performance of lab-scale ceramic hollow fiber membrane contactor by gas/liquid flow direction and module design. Sep Purif Technol 2019, 220, 189-196, DOI: 10.1016/j.seppur.2019.03.011.
(79) Gude, U.; Baumann, S.; Meulenberg, W. A.; Muller, M. Towards the development of materials for chemically stable carbonate- ceramic membranes to be used for CO2 separation in water-gas-shift reactors. Sep Purif Technol 2019, 215, 378-383, DOI: 10.1016/j.seppur.2019.01.020.
(80) Huelsenbeck, L.; Westendorff, K. S.; Gu, Y. T.; Marino, S.; Jung, S.; Epling, W. S.; Giri, G. Modulating and Orienting an Anisotropic Zn-Based Metal Organic Framework for Selective CH4/CO2 Gas Separation. Crystals 2019, 9 (1), 20, DOI: 10.3390/cryst9010020.
(81) Omidvar, M.; Stafford, C. M.; Lin, H. Thermally stable cross-linked P84 with superior membrane H2/CO2 separation properties at 100° C. J Membrane Sci 2019, 575, 118-125, DOI: 10.1016/j.memsci.2019.01.003.
(82) Chew, T. L.; Yeong, Y. F.; Ho, C. D.; Ahmad, A. L. Ion-Exchanged Silicoaluminophosphate-34 Membrane for Efficient CO2/N2 Separation with Low CO2 Concentration in the Gas Mixture. Industrial Engineering Chemistry Research 2018, 58 (2), 729-735, DOI: 10.1021/acs.iecr.8b03543.
(83) Zhang, Z.; Kang, G. D.; Yu, H. J.; Jin, Y.; Cao, Y. M. From reverse osmosis to nanofiltration: Precise control of the pore size and charge of polyamide membranes via interfacial polymerization. Desalination 2019, 466, 16-23, DOI: 10.1016/j.desal.2019.05.001.
(84) Jia, Y.; Shmakov, S. N.; Pinkhassik, E. Controlled Permeability in Porous Polymer Nanocapsules Enabling Size- and Charge-Selective SERS Nanoprobes. ACS Appl Mater Interfaces 2016, 8 (30), 19755-63, DOI: 10.1021/acsami.6b05522.
(85) Tijing, L. D.; Woo, Y. C.; Choi, J.-S.; Lee, S.; Kim, S.-H.; Shon, H. K. Fouling and its control in membrane distillation—A review. J Membrane Sci 2015, 475, 215-244, DOI: 10.1016/j.memsci.2014.09.042.
(86) Wang, Y.; Zhang, Z.; Li, T.; Ma, P.; Zhang, H.; Chen, M.; Du, M.; Dong, W. Photothermal-Responsive Graphene Oxide Membrane with Smart Gates for Water Purification. ACS Appl Mater Interfaces 2019, 11 (47), 44886-44893, DOI: 10.1021/acsami.9b15988.
(87) Wang, Y.; Lai, C.; Wang, X.; Liu, Y.; Hu, H.; Guo, Y.; Ma, K.; Fei, B.; Xin, J. H. Beads-on-String Structured Nanofibers for Smart and Reversible Oil/Water Separation with Outstanding Antifouling Property. ACS Appl Mater Interfaces 2016, 8 (38), 25612-20, DOI: 10.1021/acsami.6b08747.
(88) Gebrekrstos, A.; Madras, G.; Bose, S. Journey of electroactive β-polymorph of poly (vinylidenefluoride) from crystal growth to design to applications. Crystal Growth Design 2019, 19 (9), 5441-5456, DOI: 10.1021/acs.cgd.9b00381.
(89) Sultana, A.; Sadhukhan, P.; Alam, M. M.; Das, S.; Middya, T. R.; Mandal, D. Organo-Lead Halide Perovskite Induced Electroactive beta-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector. ACS Appl Mater Interfaces 2018, 10 (4), 4121-4130, DOI: 10.1021/acsami.7b17408.
(90) Garain, S.; Jana, S.; Sinha, T. K.; Mandal, D. Design of In Situ Poled Ce3+-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator. Acs Appl Mater Inter 2016, 8 (7), 4532-4540, DOI: 10.1021/acsami.5b11356.
(91) Chen, S.; Li, X.; Yao, K.; Tay, F. E. H.; Kumar, A.; Zeng, K. Self-polarized ferroelectric PVDF homopolymer ultra-thin films derived from Langmuir–Blodgett deposition. Polymer 2012, 53 (6), 1404-1408, DOI: 10.1016/j.polymer.2012.01.058.
(92) Soin, N.; Boyer, D.; Prashanthi, K.; Sharma, S.; Narasimulu, A. A.; Luo, J.; Shah, T. H.; Siores, E.; Thundat, T. Exclusive self-aligned beta-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. Chem Commun (Camb) 2015, 51 (39), 8257-60, DOI: 10.1039/c5cc01688f.
(93) Issa, A. A.; Al-Maadeed, M. A. S.; Mrlik, M.; Luyt, A. S. Electrospun PVDF graphene oxide composite fibre mats with tunable physical properties. J Polym Res 2016, 23 (8), 1-13, DOI: 10.1007/s10965-016-1126-y.
(94) Karan, S. K.; Mandal, D.; Khatua, B. B. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale 2015, 7 (24), 10655-66, DOI: 10.1039/c5nr02067k.
(95) Ong, W. L.; Gao, M.; Ho, G. W. Hybrid organic PVDF-inorganic M-rGO-TiO2 (M = Ag, Pt) nanocomposites for multifunctional volatile organic compound sensing and photocatalytic degradation-H2 production. Nanoscale 2013, 5 (22), 11283-90, DOI: 10.1039/c3nr03276k.
(96) Qin, A. W.; Li, X.; Zhao, X. Z.; Liu, D. P.; He, C. J. Engineering a Highly Hydrophilic PVDF Membrane via Binding TiO2 Nanoparticles and a PVA Layer onto a Membrane Surface. Acs Appl Mater Inter 2015, 7 (16), 8427-8436, DOI: 10.1021/acsami.5b00978.
(97) Jana, S.; Garain, S.; Ghosh, S. K.; Sen, S.; Mandal, D. The preparation of γ-crystalline non-electrically poled photoluminescant ZnO–PVDF nanocomposite film for wearable nanogenerators. Nanotechnology 2016, 27 (44), 445403, DOI: 10.1088/0957-4484/27/44/445403.
(98) Wang, M.; Liu, G.; Yu, H.; Lee, S. H.; Wang, L.; Zheng, J.; Wang, T.; Yun, Y.; Lee, J. K. ZnO Nanorod Array Modified PVDF Membrane with Superhydrophobic Surface for Vacuum Membrane Distillation Application. ACS Appl Mater Interfaces 2018, 10 (16), 13452-13461, DOI: 10.1021/acsami.8b00271.
(99) Jayakumar, O.; Mandal, B.; Majeed, J.; Lawes, G.; Naik, R.; Tyagi, A. Inorganic–organic multiferroic hybrid films of Fe3O4 and PVDF with significant magneto-dielectric coupling. Journal of Materials Chemistry C 2013, 1 (23), 3710-3715, DOI: 10.1039/C3TC30216D.
(100) Yu, H.; Huang, T.; Lu, M.; Mao, M.; Zhang, Q.; Wang, H. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology 2013, 24 (40), 405401, DOI: 10.1088/0957-4484/24/40/405401.
(101) Abzan, N.; Kharaziha, M.; Labbaf, S. Development of three-dimensional piezoelectric polyvinylidene fluoride-graphene oxide scaffold by non-solvent induced phase separation method for nerve tissue engineering. Mater Design 2019, 167, 107636, DOI: 10.1016/j.matdes.2019.107636.
(102) Shang, H. M.; Wang, Y.; Limmer, S. J.; Chou, T. P.; Takahashi, K.; Cao, G. Z. Optically transparent superhydrophobic silica-based films. Thin Solid Films 2005, 472 (1-2), 37-43, DOI: 10.1016/j.tsf.2004.06.087.
(103) Huang, T.; Yang, S.; He, P.; Sun, J.; Zhang, S.; Li, D.; Meng, Y.; Zhou, J.; Tang, H.; Liang, J.; Ding, G.; Xie, X. Phase-Separation-Induced PVDF/Graphene Coating on Fabrics toward Flexible Piezoelectric Sensors. ACS Appl Mater Interfaces 2018, 10 (36), 30732-30740, DOI: 10.1021/acsami.8b10552.
(104) Fontananova, E.; Bahattab, M. A.; Aljlil, S. A.; Alowairdy, M.; Rinaldi, G.; Vuono, D.; Nagy, J. B.; Drioli, E.; Di Profio, G. From hydrophobic to hydrophilic polyvinylidenefluoride (PVDF) membranes by gaining new insight into material's properties. Rsc Advances 2015, 5 (69), 56219-56231, DOI: 10.1039/c5ra08388e.
(105) Haider, S.; Lindbrathen, A.; Lie, J. A.; Hagg, M. B. Regenerated cellulose based carbon membranes for CO2 separation: Durability and aging under miscellaneous environments. J Ind Eng Chem 2019, 70, 363-371, DOI: 10.1016/j.jiec.2018.10.037.
(106) Chen, H.; Hung, W.-S.; Lo, C.-H.; Huang, S.-H.; Cheng, M.-L.; Liu, G.; Lee, K.-R.; Lai, J.-Y.; Sun, Y.-M.; Hu, C.-C. Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization. Macromolecules 2007, 40 (21), 7542-7557.
(107) Hung, W.-S.; De Guzman, M.; Huang, S.-H.; Lee, K.-R.; Jean, Y.; Lai, J.-Y. Characterizing free volumes and layer structures in asymmetric thin-film polymeric membranes in the wet condition using the variable monoenergy slow positron beam. Macromolecules 2010, 43 (14), 6127-6134.
(108) Kirkegaard, P.; Eldrup, M.; Mogensen, O. E.; Pedersen, N. J. Program system for analysing positron lifetime spectra and angular correlation curves. Computer Physics Communications 1981, 23 (3), 307-335, DOI: 10.1016/0010-4655(81)90006-0.
(109) Tao, S. Positronium annihilation in molecular substances. The Journal of Chemical Physics 1972, 56 (11), 5499-5510, DOI: 10.1063/1.1677067.
(110) Hung, W. S.; De Guzman, M.; Huang, S. H.; Lee, K. R.; Jean, Y. C.; Lai, J. Y. Characterizing Free Volumes and Layer Structures in Asymmetric Thin-Film Polymeric Membranes in the Wet Condition Using the Variable Monoenergy Slow Positron Beam. Macromolecules 2010, 43 (14), 6127-6134, DOI: 10.1021/ma100559u.
(111) Lu, C.; Chen, X. Flexible and Electroactive Ionogel Graphene Composite Actuator. Materials (Basel) 2020, 13 (3), 656, DOI: 10.3390/ma13030656.
(112) Jiang, L. J.; Wang, J. L.; Liu, P.; Song, W.; He, B. L. Study of water adsorption on graphene edges. Rsc Advances 2018, 8 (20), 11216-11221, DOI: 10.1039/c8ra00002f.
(113) Liu, L. C.; Zhou, M.; Jin, L.; Li, L. C.; Mo, Y. T.; Su, G. S.; Li, X.; Zhu, H. W.; Tian, Y. Recent advances in friction and lubrication of graphene and other 2D materials: Mechanisms and applications. Friction 2019, 7 (3), 199-216, DOI: 10.1007/s40544-019-0268-4.
(114) Kalbac, M.; Reina-Cecco, A.; Farhat, H.; Kong, J.; Kavan, L.; Dresselhaus, M. S. The influence of strong electron and hole doping on the Raman intensity of chemical vapor-deposition graphene. ACS Nano 2010, 4 (10), 6055-63, DOI: 10.1021/nn1010914.
(115) Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys Rep 2009, 473 (5-6), 51-87, DOI: 10.1016/j.physrep.2009.02.003.
(116) Guo, Z. W.; Nilsson, E.; Rigdahl, M.; Hagstrom, B. Melt spinning of PVDF fibers with enhanced phase structure. J Appl Polym Sci 2013, 130 (4), 2603-2609, DOI: 10.1002/app.39484.
(117) Jawaid, M.; Bouhfid, R. Functionalized graphene nanocomposites and their derivatives: Synthesis, processing and applications, Elsevier: 2018.
(118) Kakihana, Y.; Cheng, L.; Fang, L. F.; Wang, S. Y.; Jeon, S.; Saeki, D.; Rajabzadeh, S.; Matsuyama, H. Preparation of positively charged PVDF membranes with improved antibacterial activity by blending modification: Effect of change in membrane surface material properties. Colloid Surface A 2017, 533, 133-139, DOI: 10.1016/j.colsurfa.2017.08.039.
(119) Córdoba-Torres, P.; Mesquita, T. J.; Nogueira, R. P. Relationship between the origin of constant-phase element behavior in electrochemical impedance spectroscopy and electrode surface structure. The Journal of Physical Chemistry C 2015, 119 (8), 4136-4147, DOI: 10.1021/jp512063f.
(120) Yu, Z.; Pan, Y.; He, Y.; Zeng, G.; Shi, H.; Di, H. Preparation of a novel anti-fouling β-cyclodextrin–PVDF membrane. RSC Advances 2015, 5 (63), 51364-51370, DOI: 10.1039/C5RA04894J.
(121) Feijani, E. A.; Mandavi, H.; Tavasoli, A. Poly(vinylidene fluoride) based mixed matrix membranes comprising metal organic frameworks for gas separation applications. Chem Eng Res Des 2015, 96, 87-102, DOI: 10.1016/j.cherd.2015.02.009.
(122) Fuentes-Azcatl, R.; Dominguez, H. Carbon Dioxide Confined between Two Charged Single Layers of Graphene: Molecular Dynamics Studies. J Phys Chem C 2019, 123 (38), 23705-23710, DOI: 10.1021/acs.jpcc.9b05239.
(123) Perez, E. V.; Karunaweera, C.; Musselman, I. H.; Balkus, K. J.; Ferraris, J. P. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations. Processes 2016, 4 (3), 32, DOI: 10.3390/pr4030032.
(124) Goudarzi, M.; Parhizgar, S. S.; Beheshtian, J. Electronic and optical properties of vacancy and B, N, O and F doped graphene: DFT study. Opto-Electronics Review 2019, 27 (2), 130-136, DOI: 10.1016/j.opelre.2019.05.002.
(125) Semsarzadeh, M. A.; Sadeghi, M.; Barikani, M. Effect of chain extender length on gas permeation properties of polyurethane membranes. Iran Polym J 2008, 17 (6), 431-440.
(126) Couto, R. M.; Carvalho, T.; Neves, L. A.; Ruivo, R. M.; Vidinha, P.; Paiva, A.; Coelhoso, I. M.; Barreiros, S.; Simões, P. C. Development of ion-jelly® membranes. Separation Purification Technology 2013, 106, 22-31, DOI: 10.1016/j.seppur.2012.12.026.
(127) Ahmadi Feijani, E.; Tavasoli, A.; Mahdavi, H. Improving gas separation performance of poly (vinylidene fluoride) based mixed matrix membranes containing metal–organic frameworks by chemical modification. Industrial Engineering Chemistry Research 2015, 54 (48), 12124-12134, DOI: 10.1021/acs.iecr.5b02549.
(128) da Silva Biron, D.; Cherubini, C.; dos Santos, V.; Gomes, L.; Schneider, A.; Zeni, M. Gas separation process: analysis of composite membranes based on alumina/PVDF at lower power consumption energy. Desalination Water Treatment 2013, 51 (1-3), 606-608, DOI: 10.1080/19443994.2012.705505.
(129) Hao, L.; Li, P.; Chung, T. S. PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide. J Membrane Sci 2014, 453, 614-623, DOI: 10.1016/j.memsci.2013.11.045.
(130) Tin, P. S.; Chung, T. S.; Liu, Y.; Wang, R. Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide. Carbon 2004, 42 (15), 3123-3131, DOI: 10.1016/j.carbon.2004.07.026.
(131) Kim, S.; Chen, L.; Johnson, J. K.; Marand, E. Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment. J Membrane Sci 2007, 294 (1-2), 147-158, DOI: 10.1016/j.memsci.2007.02.028.
(132) Miricioiu, M. G.; Iacob, C.; Nechifor, G.; Niculescu, V. C. High Selective Mixed Membranes Based on Mesoporous MCM-41 and MCM-41-NH2 Particles in a Polysulfone Matrix. Front Chem 2019, 7, 332, DOI: 10.3389/fchem.2019.00332.
(133) Shen, Y.; Lua, A. C. Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chemical Engineering Journal 2012, 192, 201-210, DOI: 10.1016/j.cej.2012.03.066.
(134) Acha, E.; Chen, D.; Cambra, J. Comparison of novel olivine supported catalysts for high purity hydrogen production by CO2 sorption enhanced steam reforming. Journal of CO2 Utilization 2020, 42, 101295, DOI: 10.1016/j.jcou.2020.101295.
(135) Deng, J.; Dai, Z. D.; Hou, J. W.; Deng, L. Y. Morphologically Tunable MOF Nanosheets in Mixed Matrix Membranes for CO2 Separation. Chem Mater 2020, 32 (10), 4174-4184, DOI: 10.1021/acs.chemmater.0c00020.
(136) Chi, C. L.; Wang, X. R.; Peng, Y. W.; Qian, Y. H.; Hu, Z. G.; Dong, J. Q.; Zhao, D. Facile Preparation of Graphene Oxide Membranes for Gas Separation. Chem Mater 2016, 28 (9), 2921-2927, DOI: 10.1021/acs.chemmater.5b04475.
(137) Chuah, C. Y.; Nie, L.; Lee, J.-M.; Bae, T.-H. The influence of cations intercalated in graphene-oxide membranes in tuning H2/CO2 separation performance. Separation Purification Technology 2020, 116933, DOI: 10.1016/j.seppur.2020.116933.
(138) Jang, K. S.; Kim, H. J.; Johnson, J. R.; Kim, W. G.; Koros, W. J.; Jones, C. W.; Nair, S. Modified Mesoporous Silica Gas Separation Membranes on Polymeric Hollow Fibers. Chem Mater 2011, 23 (12), 3025-3028, DOI: 10.1021/cm200939d.
(139) Jiang, X.; Li, S.; Shao, L. Pushing CO2-philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO2 separations. Energy Environmental Scienc 2017, 10 (6), 1339-1344, DOI: 10.1039/C6EE03566C.
(140) Kang, Z. X.; Peng, Y. W.; Qian, Y. H.; Yuan, D. Q.; Addicoat, M. A.; Heine, T.; Hu, Z. G.; Tee, L.; Guo, Z. G.; Zhao, D. Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO2 Separation. Chem Mater 2016, 28 (5), 1277-1285, DOI: 10.1021/acs.chemmater.5b02902.
(141) Benzaqui, M.; Pillai, R. S.; Sabetghadam, A.; Benoit, V.; Normand, P.; Marrot, J.; Menguy, N.; Montero, D.; Shepard, W.; Tissot, A.; Martineau-Corcos, C.; Sicard, C.; Mihaylov, M.; Carn, F.; Beurroies, I.; Llewellyn, P. L.; De Weireld, G.; Hadjiivanov, K.; Gascon, J.; Kapteijn, F.; Maurin, G.; Steunou, N.; Serre, C. Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture. Chem Mater 2017, 29 (24), 10326-10338, DOI: 10.1021/acs.chemmater.7b03203.
(142) Zhang, Q.; Li, H. B.; Chen, S.; Duan, J. G.; Jin, W. Q. Mixed-matrix membranes with soluble porous organic molecular cage for highly efficient C3H6/C3H8 separation. J Membrane Sci 2020, 611, 118288, DOI: 10.1016/j.memsci.2020.118288.
(143) Nazir, L. S. M.; Yeong, Y. F.; Chew, T. L. Methods and synthesis parameters affecting the formation of FAU type zeolite membrane and its separation performance: a review. J Asian Ceram Soc 2020, 8 (3), 553-571, DOI: 10.1080/21870764.2020.1769816.
(144) Lai, C. L.; Chen, J. T.; Fu, Y. J.; Liu, W. R.; Zhong, Y. R.; Huang, S. H.; Hung, W. S.; Lue, S. J.; Hu, C. C.; Lee, K. R. Bio-inspired cross-linking with borate for enhancing gas-barrier properties of poly(vinyl alcohol)/graphene oxide composite films. Carbon 2015, 82, 513-522, DOI: 10.1016/j.carbon.2014.11.003.
(145) Wu, Y.; Li, X. M.; Yang, Q.; Wang, D. B.; Yao, F. B.; Cao, J.; Chen, Z.; Huang, X. D.; Yang, Y.; Li, X. P. Mxene-modulated dual-heterojunction generation on a metal-organic framework (MOF) via surface constitution reconstruction for enhanced photocatalytic activity. Chemical Engineering Journal 2020, 390, 124519, DOI: 10.1016/j.cej.2020.124519.
(146) Wang, Z.; Knebel, A.; Grosjean, S.; Wagner, D.; Brase, S.; Woll, C.; Caro, J.; Heinke, L. Tunable molecular separation by nanoporous membranes. Nat Commun 2016, 7 (1), 13872, DOI: 10.1038/ncomms13872.
(147) Adrus, N.; Ulbricht, M. Novel hydrogel pore-filled composite membranes with tunable and temperature-responsive size-selectivity. J Mater Chem 2012, 22 (7), 3088-3098, DOI: 10.1039/c2jm15022k.
(148) He, S. S.; Jiang, X.; Li, S. W.; Ran, F. T.; Long, J.; Shao, L. Intermediate thermal manipulation of polymers of intrinsic microporous (PIMs) membranes for gas separations. Aiche J 2020, 66 (10), e16543, DOI: 10.1002/aic.16543.
(149) Yan, T.; Li, F.; Tian, J.; Wang, L.; Luo, Q.; Hou, C.; Dong, Z.; Xu, J.; Liu, J. Biomimetic Pulsating Vesicles with Both pH-Tunable Membrane Permeability and Light-Triggered Disassembly–Re-assembly Behaviors Prepared by Supra-Amphiphilic Helices. ACS applied materials interfaces 2019, 11 (34), 30566-30574, DOI: 10.1021/acsami.9b09632.
(150) Dai, L.; Ma, M. S.; Xu, J. K.; Si, C. L.; Wang, X. H.; Liu, Z.; Ni, Y. H. All-Lignin-Based Hydrogel with Fast pH-Stimuli Responsiveness for Mechanical Switching and Actuation. Chem Mater 2020, 32 (10), 4324-4330, DOI: 10.1021/acs.chemmater.0c01198.
(151) Jia, J.; Wang, C. X.; Chen, K. L.; Yin, Y. J. Drug release of yolk/shell microcapsule controlled by pH-responsive yolk swelling. Chemical Engineering Journal 2017, 327, 953-961, DOI: 10.1016/j.cej.2017.06.170.
(152) Xiang, T.; Lu, T.; Zhao, W. F.; Zhao, C. S. Ionic-Strength Responsive Zwitterionic Copolymer Hydrogels with Tunable Swelling and Adsorption Behaviors. Langmuir 2019, 35 (5), 1146-1155, DOI: 10.1021/acs.langmuir.8b01719.
(153) Ang, E. H.; Velioglu, S.; Chew, J. W. Tunable affinity separation enables ultrafast solvent permeation through layered double hydroxide membranes. J Membrane Sci 2019, 591, 117318, DOI: 10.1016/j.memsci.2019.117318.
(154) Gracheva, M. E.; Vidal, J.; Leburton, J. P. p-n Semiconductor membrane for electrically tunable ion current rectification and filtering. Nano Letters 2007, 7 (6), 1717-22, DOI: 10.1021/nl0707104.
(155) Hung, W. S.; Ho, S. Y.; Chiao, Y. H.; Chan, C. C.; Woon, W. Y.; Yin, M. J.; Chang, C. Y.; Lee, Y. M. O.; An, Q. F. Electrical Tunable PVDF/Graphene Membrane for Controlled Molecule Separation. Chem Mater 2020, 32 (13), 5750-5758, DOI: 10.1021/acs.chemmater.0c01547.
(156) Su, X. J.; Li, H. Q.; Lai, X. J.; Chen, Z. H.; Zeng, X. R. Stimuli-responsive superhydrophobic films driven by solvent vapor for electric switch and liquid manipulation. Chemical Engineering Journal 2020, 394, 124919, DOI: 10.1016/j.cej.2020.124919.
(157) Chen, X.; Xu, X. C.; Ai, S. G.; Chen, H. S.; Pei, Y. M.; Zhou, X. M. Active acoustic metamaterials with tunable effective mass density by gradient magnetic fields. Appl Phys Lett 2014, 105 (7), 071913, DOI: 10.1063/1.4893921.
(158) Lu, L. J.; Ding, W. Q.; Liu, J. Q.; Yang, B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy 2020, 78, 105251, DOI: 10.1016/j.nanoen.2020.105251.
(159) Bharath, R. S.; Chakraborthy, T.; Nhalil, H.; Masin, B.; Ashok, K.; Sreemoolanadhan, H.; Oommen, C.; Elizabeth, S. Synthesis and evaluation of PVDF–MgTiO 3 polymer–ceramic composites for low-k dielectric applications. Journal of Materials Chemistry C 2019, 7 (15), 4484-4496.
(160) Lv, W.; Sheng, Z. Z.; Zhu, Y. L.; Liu, J.; Lei, Y.; Zhang, R. R.; Chen, X. Y.; Hou, X. Highly stretchable and reliable graphene oxide-reinforced liquid gating membranes for tunable gas/liquid transport. Microsyst Nanoeng 2020, 6 (1), 1-11, DOI: 10.1038/s41378-020-0159-x.
(161) Shen, Y. J.; Wang, H. X.; Liu, J. D.; Zhang, Y. T. Enhanced Performance of a Novel Polyvinyl Amine/Chitosan/Graphene Oxide Mixed Matrix Membrane for CO2 Capture. Acs Sustain Chem Eng 2015, 3 (8), 1819-1829, DOI: 10.1021/acssuschemeng.5b00409.
(162) Li, F.; Zhan, W.; Zhuang, L.; Zhou, L.; Zhou, M.; Bai, G.; Zhou, A.; Xiao, W.; Yang, X.; Sui, G. The Acquirement of Strong Microwave Absorption of ZnFe2O4@ SiO2@ Reduced Graphene Oxide/PVDF Composite Membranes by Regulating Crystallization Behavior. The Journal of Physical Chemistry C 2020, DOI: 10.1021/acs.jpcc.0c03092.
(163) Jamil, N.; Othman, N. H.; Alias, N. H.; Shahruddin, M. Z.; Roslan, R. A.; Lau, W. J.; Ismail, A. F. Mixed matrix membranes incorporated with reduced graphene oxide (rGO) and zeolitic imidazole framework-8 (ZIF-8) nanofillers for gas separation. J Solid State Chem 2019, 270, 419-427, DOI: 10.1016/j.jssc.2018.11.028.
(164) Yang, Y.; Zhang, H.; Wang, P.; Zheng, Q.; Li, J. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J Membrane Sci 2007, 288 (1-2), 231-238, DOI: 10.1016/j.memsci.2006.11.019.
(165) Mokhtar, M.; Majlan, E. H.; Ahmad, A.; Tasirin, S. M.; Daud, W. R. W. Effect of ZnO Filler on PVA-Alkaline Solid Polymer Electrolyte for Aluminum-Air Battery Applications. J Electrochem Soc 2018, 165 (11), A2483-A2492, DOI: 10.1149/2.0381811jes.
(166) Sun, L.; Wang, S.; Jin, W.; Hou, H.; Jiang, L.; Sun, G. Nano-sized Fe2O3–SO42− solid superacid composite Nafion® membranes for direct methanol fuel cells. Int J Hydrogen Energ 2010, 35 (22), 12461-12468, DOI: 10.1016/j.ijhydene.2010.07.177.
(167) Lin, R.; Ge, L.; Liu, S.; Rudolph, V.; Zhu, Z. Mixed-matrix membranes with metal–organic framework-decorated CNT fillers for efficient CO2 separation. ACS Applied Materials Interfaces 2015, 7 (27), 14750-14757, DOI: 10.1021/acsami.5b02680.
(168) Kim, J. H.; Choi, Y.; Kang, J. H.; Choi, E.; Choi, S. E.; Kwon, O.; Kim, D. W. Scalable fabrication of deoxygenated graphene oxide nanofiltration membrane by continuous slot-die coating. J Membrane Sci 2020, 612, 118454, DOI: 10.1016/j.memsci.2020.118454.
(169) Yang, N.; Li, C.; Tang, Y. Effects of chirality and stacking on the thermal expansion effects of graphene. Mater Res Express 2020, 7 (11), DOI: 10.1088/2053-1591/abc192.
(170) Zheng, Y. W.; Wang, X. Y.; Wu, G. S. Facile Strategy of Improving Interfacial Strength of Silicone Resin Composites Through Self-Polymerized Polydopamine Followed via the Sol-Gel Growing of Silica Nanoparticles onto Carbon Fiber. Polymers 2019, 11 (10), 1639, DOI: 10.3390/polym11101639.
(171) Yang, L. P.; Phua, S. L.; Toh, C. L.; Zhang, L. Y.; Ling, H.; Chang, M. C.; Zhou, D.; Dong, Y. L.; Lu, X. H. Polydopamine-coated graphene as multifunctional nanofillers in polyurethane. Rsc Advances 2013, 3 (18), 6377-6385, DOI: 10.1039/c3ra23307c.
(172) Xu, F. G.; Xie, S.; Cao, R. T.; Feng, Y. N.; Ren, C. J.; Wang, L. Prepare poly-dopamine coated graphene@silver nanohybrid for improved surface enhanced Raman scattering detection of dyes. Sensor Actuat B-Chem 2017, 243, 609-616, DOI: 10.1016/j.snb.2016.12.039.
(173) Saif, S.; Tahir, A.; Asim, T.; Chen, Y. Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia magna. Nanomaterials (Basel) 2016, 6 (11), 205, DOI: 10.3390/nano6110205.
(174) Cui, W.; Li, M.; Liu, J.; Wang, B.; Zhang, C.; Jiang, L.; Cheng, Q. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide. ACS Nano 2014, 8 (9), 9511-7, DOI: 10.1021/nn503755c.
(175) Chen, C.-T.; Martin-Martinez, F. J.; Ling, S.; Qin, Z.; Buehler, M. J. Nacre-inspired design of graphene oxide–polydopamine nanocomposites for enhanced mechanical properties and multi-functionalities. IOPscience 2017, 1 (1), 011003, DOI: 10.1088/2399-1984/aa6aed.
(176) Zhu, Y.; Wang, J.; Zhang, F.; Gao, S.; Wang, A.; Fang, W.; Jin, J. Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil‐in‐water emulsion separation. Advanced Functional Materials 2018, 28 (40), 1804121, DOI: 10.1002/adfm.201804121.
(177) Han, X.; Zhang, L.; Li, C. Preparation of polydopamine-functionalized graphene–Fe3O4 magnetic composites with high adsorption capacities. Rsc Advances 2014, 4 (58), 30536-30541, DOI: 10.1039/C4RA04182H.
(178) Sharma, M.; Sharma, K.; Bose, S. Segmental relaxations and crystallization-induced phase separation in PVDF/PMMA blends in the presence of surface-functionalized multiwall carbon nanotubes. J Phys Chem B 2013, 117 (28), 8589-602, DOI: 10.1021/jp4033723.
(179) Guo, F. H.; Zhao, J.; Li, F. X.; Kong, D. Y.; Guo, H. G.; Wang, X.; Hu, H. Q.; Zong, L. B.; Xu, J. T. Polar crystalline phases of PVDF induced by interaction with functionalized boron nitride nanosheets. Crystengcomm 2020, 22 (37), 6207-6215, DOI: 10.1039/d0ce01001d.
(180) Yuan, D.; Li, Z.; Thitsartarn, W.; Fan, X.; Sun, J.; Li, H.; He, C. β phase PVDF-hfp induced by mesoporous SiO2 nanorods: synthesis and formation mechanism. Journal of Materials Chemistry C 2015, 3 (15), 3708-3713, DOI: 10.1039/C5TC00005J.
(181) Cao, L.; Lv, F.; Liu, Y.; Wang, W.; Huo, Y.; Fu, X.; Sun, R.; Lu, Z. A high performance O2 selective membrane based on CAU-1-NH2@ polydopamine and the PMMA polymer for Li–air batteries. Chemical Communications 2015, 51 (21), 4364-4367, DOI: 10.1039/C4CC09281C.
(182) Dong, L.; Chen, M.; Wu, X.; Shi, D.; Dong, W.; Zhang, H.; Zhang, C. Multi-functional polydopamine coating: simultaneous enhancement of interfacial adhesion and CO2 separation performance of mixed matrix membranes. New Journal of Chemistry 2016, 40 (11), 9148-9159, DOI: 10.1039/C6NJ02013E.
(183) Yu, L.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. Role of Amine Type in CO2 Separation Performance within Amine Functionalized Silica/Organosilica Membranes: A Review. Appl Sci-Basel 2018, 8 (7), 1032, DOI: 10.3390/app8071032.
(184) Li, K. J.; Kress, J. D.; Mebane, D. S. The Mechanism of CO2 Adsorption under Dry and Humid Conditions in Mesoporous Silica-Supported Amine Sorbents. J Phys Chem C 2016, 120 (41), 23683-23691, DOI: 10.1021/acs.jpcc.6b08808.
(185) Brunetti, A.; Drioli, E.; Lee, Y. M.; Barbieri, G. Engineering evaluation of CO2 separation by membrane gas separation systems. J Membrane Sci 2014, 454, 305-315, DOI: 10.1016/j.memsci.2013.12.037.
(186) Wang, S.; Zhang, Y.; Han, Y.; Hou, Y.; Fan, Y.; Hou, X. Design of Porous Membranes by Liquid Gating Technology. Accounts of Materials Research 2021, 2, 407–419, DOI: 10.1021/accountsmr.1c00024.
(187) Liangyin, C.; Rui, X.; Xiaojie, J. Stimuli-responsive membranes: Smart tools for controllable mass-transfer and separation processes. Chinese Journal of Chemical Engineering 2011, 19 (6), 891-903, DOI: 10.1016/S1004-9541(11)60070-0.
(188) Dong, L.; Fan, W.; Zhang, H.; Chen, M.; Zhao, Y. CO2-Responsive polymer membranes with gas-tunable pore size. Chemical Communications 2017, 53 (69), 9574-9577, DOI: 10.1039/C7CC05291J
(189) Widakdo, J.; Chiao, Y.-H.; Lai, Y.-L.; Imawan, A. C.; Wang, F. M.; Hung, W.-S. Mechanism of a self-assembling smart and electrically responsive PVDF-Graphene membrane for controlled gas separation. ACS Applied Materials Interfaces 2020, 12 (27), 30915-30924, DOI: 10.1021/acsami.0c04402.
(190) Knebel, A.; Geppert, B.; Volgmann, K.; Kolokolov, D.; Stepanov, A.; Twiefel, J.; Heitjans, P.; Volkmer, D.; Caro, J. Defibrillation of soft porous metal-organic frameworks with electric fields. Science 2017, 358 (6361), 347-351, DOI: 10.1126/science.aal2456.
(191) Subrahmanya, T.; Lin, P. T.; Chiao, Y.-H.; Widakdo, J.; Chuang, C.-H.; Rahmadhanty, S. F.; Yoshikawa, S.; Hung, W.-S. High performance self-heated membrane distillation system for energy efficient desalination process. Journal of Materials Chemistry A 2021, 9 (12), 7868-7880, DOI: 10.1039/D0TA11724B.
(192) Knebel, A.; Sundermann, L.; Mohmeyer, A.; Strauß, I.; Friebe, S.; Behrens, P.; Caro, J. r. Azobenzene guest molecules as light-switchable CO2 valves in an ultrathin UiO-67 membrane. Chem Mater 2017, 29 (7), 3111-3117, DOI: 10.1021/acs.chemmater.7b00147.
(193) Liu, C.; Jiang, Y.; Zhou, C.; Caro, J.; Huang, A. Photo-switchable smart metal–organic framework membranes with tunable and enhanced molecular sieving performance. Journal of Materials Chemistry A 2018, 6 (48), 24949-24955, DOI: 10.1039/C8TA10541C.
(194) Wang, X.; Chi, C.; Zhang, K.; Qian, Y.; Gupta, K. M.; Kang, Z.; Jiang, J.; Zhao, D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature communications 2017, 8 (1), 1-10, DOI: 10.1038/ncomms14460
(195) Ying, Y.; Zhang, Z.; Peh, S. B.; Karmakar, A.; Cheng, Y.; Zhang, J.; Xi, L.; Boothroyd, C.; Lam, Y. M.; Zhong, C. Pressure‐Responsive Two‐Dimensional Metal‐Organic Framework Composite Membranes for CO2 Separation. Angewandte Chemie 2021, 133, 2-10, DOI: 10.1002/anie.202017089.
(196) Guo, H.; Li, X.; Wang, Z.; Wang, J.; Wang, S. Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field. Chinese Journal of Chemical Engineering 2018, 26 (5), 1213-1218, DOI: 10.1016/j.cjche.2017.12.015.
(197) Ruan, L.; Yao, X.; Chang, Y.; Zhou, L.; Qin, G.; Zhang, X. Properties and Applications of the β Phase Poly (vinylidene fluoride). Polymers 2018, 10 (3), 228, DOI: 10.3390/polym10030228.
(198) Wang, X.; Qiao, B.; Tan, S.; Zhu, W.; Zhang, Z. Tuning the ferroelectric phase transition of PVDF by uniaxially stretching crosslinked PVDF films with CF [double bond, length as m-dash] CH bonds. Journal of Materials Chemistry C 2020, 8 (33), 11426-11440, DOI: 10.1039/D0TC02559C.
(199) He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaun, F. Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the beta Phase and Crystallinity Enhancement. Polymers 2021, 13 (2), 174, DOI: 10.3390/polym13020174.
(200) Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490 (7419), 192-200, DOI: 10.1038/nature11458.
(201) Ying, W.; Cai, J. S.; Zhou, K.; Chen, D. K.; Ying, Y. L.; Guo, Y.; Kong, X. Q.; Xu, Z. P.; Peng, X. S. Ionic Liquid Selectively Facilitates CO2 Transport through Graphene Oxide Membrane. Acs Nano 2018, 12 (6), 5385-5393, DOI: 10.1021/acsnano.8b00367.
(202) Zhang, M. L.; Liang, X. J.; Jiang, S. X.; Qiu, H. D. Preparation and applications of surface-confined ionic-liquid stationary phases for liquid chromatography. Trac-Trend Anal Chem 2014, 53, 60-72, DOI: 10.1016/j.trac.2013.09.011.
(203) Lopes, A.; Gutiérrez, J.; Barandiarán, J. Direct fabrication of a 3D-shape film of polyvinylidene fluoride (PVDF) in the piezoelectric β-phase for sensor and actuator applications. European Polymer Journal 2018, 99, 111-116, DOI: 10.1016/j.eurpolymj.2017.12.009.
(204) Ying, W.; Zhou, K.; Hou, Q.; Chen, D.; Guo, Y.; Zhang, J.; Yan, Y.; Xu, Z.; Peng, X. Selectively tuning gas transport through ionic liquid filled graphene oxide nanoslits using an electric field. Journal of Materials Chemistry A 2019, 7 (25), 15062-15067, DOI: 10.1039/C9TA04609G.
(205) Mao, X. W.; Brown, P.; Cervinka, C.; Hazell, G.; Li, H.; Ren, Y. Y.; Chen, D.; Atkin, R.; Eastoe, J.; Grillo, I.; Padua, A. A. H.; Gomes, M. F. C.; Hatton, T. A. Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nature Materials 2019, 18 (12), 1350, DOI: 10.1038/s41563-019-0449-6.
(206) Ying, W.; Hou, Q.; Chen, D.; Guo, Y.; Li, Z.; Zhang, J.; Yan, Y.; Peng, X. Electrical field facilitates selective transport of CO2 through a laminated MoS2 supported ionic liquid membrane. Journal of Materials Chemistry A 2019, 7 (16), 10041-10046, DOI: 10.1039/C9TA01636H.
(207) Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B Condens Matter 1990, 41 (11), 7892-7895, DOI: 10.1103/physrevb.41.7892.
(208) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T.; Joannopoulos, J. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of modern physics 1992, 64 (4), 1045, DOI: 10.1103/RevModPhys.64.1045.
(209) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B Condens Matter 1993, 48 (7), 4978, DOI: 10.1103/physrevb.48.4978.2.
(210) Dai, J.; Zeng, X. C. Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. J Phys Chem Lett 2014, 5 (7), 1289-93, DOI: 10.1021/jz500409m.
(211) Couto, R.; Neves, L.; Simões, P.; Coelhoso, I. Supported ionic liquid membranes and ion-jelly® membranes with [BMIM][DCA]: comparison of its performance for CO2 separation. Membranes 2015, 5 (1), 13-21, DOI: 10.3390/membranes5010013.
(212) Halder, K.; Khan, M. M.; Grnauer, J.; Shishatskiy, S.; Abetz, C.; Filiz, V.; Abetz, V. Blend membranes of ionic liquid and polymers of intrinsic microporosity with improved gas separation characteristics. J Membrane Sci 2017, 539, 368-382, DOI: 10.1016/j.memsci.2017.06.022.
(213) Kalantari, S.; Omidkhah, M.; Amooghin, A. E.; Matsuura, T. Superior interfacial design in ternary mixed matrix membranes to enhance the CO2 separation performance. Applied Materials Today 2020, 18, 100491, DOI: 10.1016/j.apmt.2019.100491.
(214) Guiver, M. D.; Yahia, M.; Dal-Cin, M. M.; Robertson, G. P.; Saeedi Garakani, S.; Du, N.; Tavajohi, N. Gas Transport in a Polymer of Intrinsic Microporosity (PIM-1) Substituted with Pseudo-Ionic Liquid Tetrazole-Type Structures. Macromolecules 2020, 53 (20), 8951-8959, DOI: 10.1021/acs.macromol.0c01321.
(215) Bernardo, P.; Jansen, J. C.; Bazzarelli, F.; Tasselli, F.; Fuoco, A.; Friess, K.; Izák, P.; Jarmarová, V.; Kačírková, M.; Clarizia, G. Gas transport properties of Pebax®/room temperature ionic liquid gel membranes. Separation Purification Technology 2012, 97, 73-82, DOI: 10.1016/j.seppur.2012.02.041.
(216) Erdni-Goryaev, E. M.; Alent'ev, A. Y.; Belov, N. A.; Ponkratov, D. O.; Shaplov, A. S.; Lozinskaya, E. I.; Vygodskii, Y. S. Gas separation characteristics of new membrane materials based on poly(ethylene glycol)-crosslinked polymers and ionic liquids. Petroleum Chemistry 2012, 52 (7), 494-498, DOI: 10.1134/S0965544112070031.
(217) Jansen, J. C.; Clarizia, G.; Bernardo, P.; Bazzarelli, F.; Friess, K.; Randova, A.; Schauer, J.; Kubicka, D.; Kacirkova, M.; Izak, P. Gas transport properties and pervaporation performance of fluoropolymer gel membranes based on pure and mixed ionic liquids. Sep Purif Technol 2013, 109, 87-97, DOI: 10.1016/j.seppur.2013.02.034.
(218) Jiang, Y. Y.; Zhou, Z.; Jiao, Z.; Li, L.; Wu, Y. T.; Zhang, Z. B. SO2 gas separation using supported ionic liquid membranes. J Phys Chem B 2007, 111 (19), 5058-5061, DOI: 10.1021/jp071742i.
(219) Chen, H. Z.; Li, P.; Chung, T. S. PVDF/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas. Int J Hydrogen Energ 2012, 37 (16), 11796-11804, DOI: 10.1016/j.ijhydene.2012.05.111.
(220) Fam, W.; Mansouri, J.; Li, H.; Chen, V. Improving CO2 separation performance of thin film composite hollow fiber with Pebax® 1657/ionic liquid gel membranes. J Membrane Sci 2017, 537, 54-68, DOI: 10.1016/j.memsci.2017.05.011.
(221) Salih, E.; Ayesh, A. I. Pt-doped armchair graphene nanoribbon as a promising gas sensor for CO and CO2: DFT study. Physica E 2021, 125, 114418, DOI: 10.1016/j.physe.2020.114418.
(222) Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M.; dos Santos, J. M.; Nilsson, J.; Guinea, F.; Geim, A. K.; Neto, A. H. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 2007, 99 (21), 216802, DOI: 10.1103/PhysRevLett.99.216802.

無法下載圖示 全文公開日期 2024/07/27 (校內網路)
全文公開日期 2026/07/27 (校外網路)
全文公開日期 2026/07/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE