簡易檢索 / 詳目顯示

研究生: 陳君瑋
Chun-Wei Chen
論文名稱: 奈米碳片/超奈米鑽石複合結構之氫氣響應特性分析
Carbon Nanowall/Ultra-nanocrystalline Diamond Hybrid Structures for Hydrogen Sensor Studies
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 張守進
Shoou-Jinn Chang
施文欽
Wen-Ching Shih
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 179
中文關鍵詞: 奈米碳片石墨烯熱退火處理電漿處理超奈米鑽石氮化硼氫氣感測器
外文關鍵詞: Carbon nanowalls
相關次數: 點閱:327下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究分為三個部分,第一部分探討奈米碳片結構之氫氣感測器,並進行電性和物性的測量分析;第二部分探討奈米碳片/超奈米鑽石複合結構之氫氣感測器,並進行電性和物性的測量分析;第三部分探討氮化硼/奈米碳片複合結構之氫氣感測器,並進行電性和物性的測量分析。
本研究第一部分的重點是使用奈米碳片以及兩種後處理(熱退火處理、氫電漿處理)來對於奈米碳片進行處理之氫氣感測器,研究發現未退火前奈米碳片缺陷越大與石墨烯層結構越厚對於氫氣感測特性最佳,奈米碳片(20 min)在100 ppm的氫氣流量下,靈敏度為18.9 %;熱退火處理後的奈米碳片(20 min/500°C),在100 ppm的氫氣流量下,靈敏度為30.96 %,主要為氧空缺缺陷變大,達到更多氧分子吸附,增強其氫氣感測特性;氫電漿處理後/奈米碳片(H2 700 W 1 min/CNWs 20 min),在100 ppm的氫氣流量下,靈敏度為12.42 %。
第二部分中,利用奈米碳片與摻氮的超奈米鑽石進行複合結構,基於超奈米鑽石的結構,使得奈米碳片能有更大的比表面積,奈米碳片/超奈米鑽(CNWs 15 min/N-UNCD 7.5min),在100 ppm的氫氣流量下,靈敏度為29.56%。
第三部分中,利用氮化硼/奈米碳片進行複合結構,主要研究氮化硼是否能對於氫氣產生響應值,但隨著氮化硼奈米片的增加,使得奈米碳片對於氫氣響應值不佳,因為奈米碳片的絕緣性,影響奈米碳片對於氫氣的感測,氮化硼/奈米碳片(BN 1 μL/CNWs 20 min),在100 ppm的氫氣流量下,靈敏度為15.21%。


With growing demands of energy of fossil fuels, the world is in urgent need of a clean and renewable source of energy. Hydrogen (H2) energy is one of the good choices. However, it is unsafe and high potential for explosion risk, so the detection of hydrogen become an important task.
In this study, hydrogen sensors based on combination of Carbon Nanowalls (CNWs), Ultra-nanocrystalline diamond(N-UNCD) are investigated. First of all, it is focused on the effects of the quality and post-processing of Carbon Nanowalls, which was grown by physical vapor deposition (PVD) at different time duration. It was found that CNWs 20 min based H2 sensor, which exhibits response of 30.96% after 500 °C N2 annealed post treatment, compared to CNWs 20 min(18.9%) based hydrogen sensor at room temperature. Then ultra-nanocrystalline diamond was used as substrate to form the CNWs/N-UNCD hybrid nanostructure. It is noted that CNWs(15 min)/N-UNCD (7.5 min) samples show H2 gas response of 29.56%. This study shows promising performances for carbon-based hydrogen sensors.

中文摘要 I Abstract II 致謝 II 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1前言 1 1.2研究動機 2 第二章 文獻探討 3 2.1石墨烯與奈米碳片特性簡介 3 2.1.1石墨烯的基本性質與製備方法 6 2.1.2奈米碳片之性質與製備方法 11 2.2鑽石薄膜基本性質及結構 15 2.2.1超奈米鑽石成長機制 17 2.2.2微米結晶鑽石薄膜(MCD) 18 2.2.3奈米結晶鑽石(NCD) 18 2.2.4超奈米結晶鑽石(UNCD) 19 2.3氮化硼之性質介紹 20 2.3.1化學氣相沉積法(Chemical Vapor Deposition, CVD) 21 2.3.2液相剝離法(Liquid Phase Exfoliation, LPE) 21 2.3.3膠帶剝離法 22 2.4氣體感測器介紹 22 2.4.1金屬氧化物半導體型 23 2.4.2電化學固態電解質型 23 2.4.3觸媒燃燒型 24 2.4.4紅外線感測型 25 2.5奈米碳片與氫氣感測 26 第三章 實驗方法 28 3.1實驗設計與流程 28 3.2製備之材料介紹 32 3.3基板清洗 33 3.4物理氣相沉積法(PVD)成長奈米碳片 34 3.5熱處理方式 35 3.6氫電漿處理方式 35 3.7微波電漿化學氣相沉積法成長超奈米鑽石 36 3.8液相剝離法分離氮化硼參數 37 3.9電極參數 38 3.10儀器設備與材料分析方法 39 3.10.1場發射掃描式電子顯微鏡(FE-SEM) 39 3.10.2拉曼光譜儀(Raman Spectrum) 40 3.10.3 X射線光電子能譜儀(X-Ray Photoelectron Sprectroscpoe, XPS) 41 3.10.4場發射槍穿透式電子顯微鏡(Field Emission Gun Transmission Micro-scope,FEG-TEM) 42 3.10.5氣體感測器(Gas Sensor) 43 第四章 奈米碳片之氫氣感測特性分析 44 4.1不同成長時間之奈米碳片之特性分析 44 4.1.1表面型態分析 44 4.1.2場發射槍穿透式電子顯微鏡分析 48 4.1.3拉曼光譜分析 49 4.1.4 X射線光電子能譜分析 51 4.1.5奈米碳片之氫氣感測分析 53 4.2 不同退火溫度後不同成長時間之奈米碳片之特性分析 60 4.2.1表面型態分析 60 4.2.2拉曼光譜分析 67 4.2.3 X射線光電子能譜分析 72 4.2.4不同退火溫度後不同成長時間之奈米碳片之氫氣感測分析 83 4.3 氫電漿後處理之奈米碳片之特性分析 101 4.3.1表面型態分析 101 4.3.2拉曼光譜分析 104 4.3.3 X射線光電子能譜分析 106 4.3.4氫電漿後處理之奈米碳片之氫氣感測分析 108 4.4奈米碳片之綜合分析 114 第五章 奈米碳片/超奈米鑽石複合結構之氫氣感測特性分析 117 5.1超奈米鑽石之特性分析 117 5.1.1表面型態分析 117 5.1.2拉曼光譜分析 120 5.2奈米碳片/超奈米鑽石之特性分析 121 5.2.1表面型態分析 121 5.2.2拉曼光譜分析 126 5.2.3 X射線光電子能譜分析 130 5.2.4奈米碳片/超奈米鑽石之氫氣感測分析 139 5.3奈米碳片/超奈米鑽石複合結構之綜合分析 149 第六章 氮化硼/奈米碳片之氫氣感測特性分析 152 6.1氮化硼之特性分析 152 6.1.1表面型態分析 152 6.1.2拉曼光譜分析 155 6.2不同滴量氮化硼-奈米碳片之特性分析 156 6.2.1表面型態分析 156 6.2.2拉曼光譜分析 159 6.2.3 X射線光電子能譜分析 161 6.2.4不同滴量氮化硼-奈米碳片之氫氣感測分析 164 6.3 氮化硼/奈米碳片之綜合分析 170 第七章 結論與未來展望 171 7.1結論 171 7.2未來展望 174 參考文獻 175

[1] MEMS (Micro Electro Mechanical System). MoneyDJ理財網 2021/07/11
[2] 氣體傳感器的應用範圍與市場規模分析. 3S Market「全球智慧科技應用」市場資訊網 July 11, 2021
[3] 氫. 維基百科 2021/07/11
[4] 再生能源展望-氫能篇. 經濟部能源局再生能源資訊網 2018/11/19 [cited 2021 07/11]
[5] 地球的地殼元素豐度列表. 維基百科
[6] 碳. 維基百科
[7] Balandin, A.A., et al., Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 2008. 8(3): p. 902-907.
[8] Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-710.
[9] Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9): p. 351-355.
[10] Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320(5881): p. 1308.
[11] Geim, A.K. and K.S. Novoselov, The rise of graphene, in Nanoscience and Technology. 2009, Co-Published with Macmillan Publishers Ltd, UK. p. 11-19.
[12] 石墨烯的結構、性質與應用. 材料科學網, 2016/12/28.
[13] 石墨烯.
[14] 石墨烯與二維材料-微奈米科技研究中心-林志堅.
[15] Slobodian, P., et al., High sensitivity of a carbon nanowall-based sensor for detection of organic vapours. RSC Advances, 2015. 5(110): p. 90515-90520.
[16] Hosu, I.S., et al., Carbon nanowalls: a new versatile graphene based interface for the laser desorption/ionization-mass spectrometry detection of small compounds in real samples. Nanoscale, 2017. 9(27): p. 9701-9715.
[17] Qazi, M., T. Vogt, and G. Koley, Trace gas detection using nanostructured graphite layers. Applied Physics Letters, 2007. 91(23): p. 233101.
[18] Jia, M., et al., Preparation and application of lysozyme imprinted monolithic column with dopamine as the functional monomer. Journal of Materials Chemistry, 2012. 22(2): p. 707-713.
[19] 陳姿吟助理、李連忠副研究員, 以化學氣相沉積法成長大面積之石墨烯.
[20] Wu, Y., et al., Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition. Advanced Materials, 2002. 14(1): p. 64-67.
[21] Zhang, Y., et al., Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology. Nanotechnology, 2011. 23(1): p. 015202.
[22] Vesel, A., et al., Synthesis of Vertically Oriented Graphene Sheets or Carbon Nanowalls—Review and Challenges. Materials, 2019. 12(18).
[23] Lee, S.-K., D. Chang, and S.W. Kim, Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection. Journal of Hazardous Materials, 2014. 268: p. 110-114.
[24] Su, C.-Y., et al., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano, 2011. 5(3): p. 2332-2339.
[25] Tanaka, K., et al., Growth of Carbon Nanowalls on a SiO2Substrate by Microwave Plasma-Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2005. 44(4A): p. 2074-2076.
[26] Tomatsu, M., et al., Hydrogen peroxide sensor based on carbon nanowalls grown by plasma-enhanced chemical vapor deposition. Japanese Journal of Applied Physics, 2017. 56(6S2): p. 06HF03.
[27] Shih, W.-C., et al., Enhancing electron field emission of carbon nanoflakes by hydrogen post-annealing process. Journal of Materials Science: Materials in Electronics, 2011. 22(9): p. 1269-1273.
[28] Wang, Y., J. Li, and K. Song, Study on formation and photoluminescence of carbon nanowalls grown on silicon substrates by hot filament chemical vapor deposition. Journal of Luminescence, 2014. 149: p. 258-263.
[29] Gruen, D.M., Conversion of fullerenes to diamond. US Patents 5,370,855 (1994) and 5,462,776 (1995).
[30] Cai, Y., et al., Strategy towards independent electrical stimulation from cochlear implants: Guided auditory neuron growth on topographically modified nanocrystalline diamond. Acta Biomaterialia, 2016. 31: p. 211-220.
[31] Wei, C., W.-J. Pan, and M.-S. Hung, The effects of substrate roughness and associated surface properties on the biocompatibility of diamond-like carbon films. Surface and Coatings Technology, 2013. 224: p. 8-17.
[32] Butler, J.E. and A.V. Sumant, The CVD of Nanodiamond Materials. Chemical Vapor Deposition, 2008. 14(7-8): p. 145-160.
[33] Yang, K.-H., et al., Ultrananocrystalline diamond-coated nanoporous membranes support SK-N-SH neuroblastoma endothelial cell attachment. Interface Focus, 2018. 8(3): p. 20170063.
[34] Sumant, A.V., et al., Ultrananocrystalline and Nanocrystalline Diamond Thin Films for MEMS/NEMS Applications. MRS Bulletin, 2010. 35(4): p. 281-288.
[35] Lin, C.R., et al., Development of High-Performance UV Detector Using Nanocrystalline Diamond Thin Film. International Journal of Photoenergy, 2014. 2014: p. 492152.
[36] Arora, S. and V.D. Vankar, Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness. Thin Solid Films, 2006. 515(4): p. 1963-1969.
[37] Asmussen, J., T.A. Grotjohn, and T. Schuelke, Chapter 2 - Advances in Plasma Synthesis of UNCD Films, in Ultananocrystalline Diamond (Second Edition), O.A. Shenderova and D.M. Gruen, Editors. 2012, William Andrew Publishing: Oxford. p. 53-83.
[38] Matsumoto, S., et al., Vapor Deposition of Diamond Particles from Methane. Japanese Journal of Applied Physics, 1982. 21(Part 2, No. 4): p. L183-L185.
[39] WEC Superabrasives.
[40] Corrigan, T., et al., The effect of nitrogen addition to Ar/CH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond. Diamond and Related Materials, 2002. 11: p. 43-48.
[41] 曾永華、陳柏穎、鄭宇明、游銘永, “人造鑽石的合成及應用”. 科學發展497期.
[42] 凱樂士股份有限公司, BN(Boron Nitride).
[43] Zou, Q., et al., Highly thermally conductive and eco-friendly OH-h-BN/chitosan nanocomposites by constructing a honeycomb thermal network. Carbohydrate Polymers, 2021. 266: p. 118127.
[44] 丁子先, et al., 六方氮化硼的液相剥离及其在电子器件热管理应用的研究进展. 材料工程, 2019. 47(12): p. 21-32.
[45] Kim, K.K., et al., Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition. Nano Letters, 2012. 12(1): p. 161-166.
[46] Shen, J., et al., Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. Nano Letters, 2015. 15(8): p. 5449-5454.
[47] Pacilé, D., et al., The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Applied Physics Letters, 2008. 92(13): p. 133107.
[48] 吳仁彰, 奈米材料應用於氣體感測器之發展.
[49] Wang, Z.-g., et al., The green synthesis of reduced graphene oxide by the ethanol-thermal reaction and its electrical properties. Materials Letters, 2014. 116: p. 416-419.
[50] 催化燃燒式氣體傳感器在氣體檢測中的應用. 2017-06-27
[51] 氣體檢測儀簡介分類工作原理.
[52] 光學式氣體傳感器的工作原理. 中國傳感器網
[53] 張育唐, 陳., 比爾定律與吸收度.
[54] 源理科技有限公司. 紅外線氣體偵測器.
[55] Xiao, Z., et al., Recent development in nanocarbon materials for gas sensor applications. Sensors and Actuators B: Chemical, 2018. 274: p. 235-267.
[56] 國立臺灣科技大學貴重儀器中心, 高解析度場發射掃描式電子顯微鏡 (FESEM-7900F).
[57] 拉曼光譜分析原理.
[58] 國立臺灣科技大學材料科學與工程學系, 顯微拉曼光譜儀.
[59] Oura, K., et al., Electronic Structure of Surfaces, in Surface Science: An Introduction, K. Oura, et al., Editors. 2003, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 261-293.
[60] Himpsel, F.J., et al., Microscopic structure of the SiO2/Si interface. Physical Review B, 1988. 38(9): p. 6084-6096.
[61] 國立臺灣科技大學化學工程學系, X 射線光電子能譜儀.
[62] 國立臺灣大學貴重儀器中心, 場發射槍穿透式電子顯微鏡(300 kV).
[63] Cho, H.J., et al., Density control of carbon nanowalls grown by CH4/H2 plasma and their electrical properties. Carbon, 2014. 68: p. 380-388.
[64] Tu, Z., et al., Controllable growth of 1–7 layers of graphene by chemical vapour deposition. Carbon, 2014. 73: p. 252-258.
[65] Wang, B.B., et al., Carbon nanoflake-nanoparticle interface: A comparative study on structure and photoluminescent properties of carbon nanoflakes synthesized on nanostructured gold and carbon by hot filament CVD. Carbon, 2017. 124: p. 391-402.
[66] Ionita, M., et al., Functionalization of carbon nanowalls by plasma jet in liquid treatment. The European Physical Journal D, 2016. 70.
[67] Yu, K., et al., Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication. Nanoscale Research Letters, 2011. 6(1): p. 202.
[68] Zhang, L., et al., Thickness Measurement of Oxide and Carbonaceous Layers on a 28Si Sphere by XPS. IEEE Transactions on Instrumentation and Measurement, 2017. 66(6): p. 1297-1303.
[69] Sankaran, K.J., et al., Enhancement of the Electron Field Emission Properties of Ultrananocrystalline Diamond Films via Hydrogen Post-Treatment. ACS Applied Materials & Interfaces, 2014. 6(16): p. 14543-14551.
[70] Sajjad, M. and P. Feng, Study the gas sensing properties of boron nitride nanosheets. Materials Research Bulletin, 2014. 49: p. 35-38.
[71] Kokulnathan, T., et al., Heterostructured bismuth oxide/hexagonal-boron nitride nanocomposite: A disposable electrochemical sensor for detection of flutamide. Ecotoxicology and Environmental Safety, 2021. 207: p. 111276.
[72] Jerome, R. and A.K. Sundramoorthy, Preparation of hexagonal boron nitride doped graphene film modified sensor for selective electrochemical detection of nicotine in tobacco sample. Analytica Chimica Acta, 2020. 1132: p. 110-120.
[73] Wang, L., et al., Monolayer Hexagonal Boron Nitride Films with Large Domain Size and Clean Interface for Enhancing the Mobility of Graphene-Based Field-Effect Transistors. Advanced Materials, 2014. 26(10): p. 1559-1564.
[74] Kumar, R., S. Malik, and B.R. Mehta, Interface induced hydrogen sensing in Pd nanoparticle/graphene composite layers. Sensors and Actuators B: Chemical, 2015. 209: p. 919-926.
[75] Dhall, S., N. Jaggi, and R. Nathawat, Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sensors and Actuators A: Physical, 2013. 201: p. 321-327.
[76] Yan, K., Y. Toku, and Y. Ju, Highly sensitive hydrogen sensor based on a new suspended structure of cross-stacked multiwall carbon nanotube sheet. International Journal of Hydrogen Energy, 2019. 44(12): p. 6344-6352.
[77] Kathiravan, D., B.-R. Huang, and A. Saravanan, Self-Assembled Hierarchical Interfaces of ZnO Nanotubes/Graphene Heterostructures for Efficient Room Temperature Hydrogen Sensors. ACS Applied Materials & Interfaces, 2017. 9(13): p. 12064-12072.
[78] Kamal, T., High performance NiO decorated graphene as a potential H2 gas sensor. Journal of Alloys and Compounds, 2017. 729: p. 1058-1063.
[79] Pak, Y., et al., Palladium-Decorated Hydrogen-Gas Sensors Using Periodically Aligned Graphene Nanoribbons. ACS Applied Materials & Interfaces, 2014. 6(15): p. 13293-13298.
[80] Saravanan, A., B.-R. Huang, and D. Kathiravan, Hierarchical morphology and hydrogen sensing properties of N2-based nanodiamond materials produced through CH4/H2/Ar plasma treatment. Applied Surface Science, 2018. 457: p. 367-375.
[81] Huang, B.-R., et al., Crystalline Nanodiamond-Induced Formation of Carbon Nanotubes for Stable Hydrogen Sensing. ACS Applied Nano Materials, 2021. 4(3): p. 2840-2848.

無法下載圖示 全文公開日期 2026/08/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE