簡易檢索 / 詳目顯示

研究生: 洪偉又
Wei-You Hong
論文名稱: 無線壓力感測器應用於顱內壓力量測之體外模型驗證
In Vitro Verification of Intracranial Pressure Measurement with Wireless Pressure Sensor
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 陳品銓
PIN-CHUAN CHEN
廖健宏
JIAN-HONG LIAO
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 122
中文關鍵詞: 顱內壓腦積水無線壓力感測器大腦體外模型
外文關鍵詞: Intracranial pressure, Hydrocephalus, Wireless pressure sensor, In vitro brain model
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 顱內高壓發生的原因主要是受到外傷出血、腦脊液分泌過多、吸收障礙或是先天性導水管狹窄等情況引起。一旦出現顱內壓超過20mmHg的情況,須立即進行腦脊液引流手術,否則將會對大腦造成永久性傷害,尤其出血性顱內高壓在30天內的死亡率高達50%。
    研究指出顱內高壓最有效的治療方式為腦室外引流(External Ventricular Drain,EVD),因其能夠直接量測腦室內的壓力數值和對腦室內多餘的腦脊液進行有效引流。本研究主旨為將無線壓力感測器結合EVD系統量測顱內壓力數值,改善ICU病房的複雜性且盡可能減少EVD手術的照護流程。本研究首先以簡易設計的液面下壓力將感測器數值進行補償,後續結合製作而成的大腦模型,設計出兩種主要顱內高壓的形式。不斷的驗證不同大腦模型的合理性並和無線壓力感測器所量測出來的數值做比較,成功的將無線壓力感測器數值的誤差控制在美國國家標準協會(American National Standards Institute,ANSI)對於顱內壓監測系統的規範,顱內壓0-20mmHg範圍內±2mmHg,>20mmHg在10%誤差內。


    Intracranial hypertension is mainly caused by traumatic hemorrhage, excessive secretion of cerebrospinal fluid, absorption disorders, or congenital aqueductal stenosis. Once intracranial pressure exceeds 20mmHg, cerebrospinal fluid must be drained immediately. Otherwise, permanent damage to the brain will be caused, especially hemorrhagic intracranial hypertension, which can lead to a 50% mortality rate within 30 days.
    Studies have shown that the most effective treatment mode of intracranial hypertension is External Ventricular Drain (EVD), which directly measures the ventricular pressure and effectively drains excess cerebrospinal fluid in the ventricle. The purpose of this study was to measure intracranial pressure with a wireless pressure sensor combined with an EVD system to improve the complexity of the ICU ward and minimize the care flow of EVD surgery. In this study, the values of the sensor were firstly compensated by the simple design of the pressure below the liquid level, and then two main forms of intracranial hypertension were designed by combining the brain model made by the deployment. The rationality of different brain models was constantly verified and compared with the values measured by the wireless pressure sensor. The error of the wireless pressure sensor value is successfully controlled within the American National Standards Institute (ANSI) specification for intracranial pressure monitoring systems. The intracranial pressure is ±2mmHg within the range of 0-20mmHg, and the error of >20mmHg is within 10%.

    摘要 I Abstract II 誌謝 IV 目錄 VI 圖目錄 X 表目錄 1 第 1 章 第一章、緒論 2 1.1. 研究背景 2 1.2. 研究動機與目的 5 第 2 章 第二章、文獻回顧 8 2.1.顱內高壓 8 2.1.1. 顱內高壓形式 8 2.1.2. 顱內高壓的症狀 11 2.2. 顱內高壓監測方法 12 2.2.1.有創顱內壓監測方法 12 2.2.2.無創顱內壓監測方法 14 2.3. 腦組織代替材料 16 2.3.1.腦實質替代材料 16 2.3.2.腦脊液替代材料 18 2.3.3.顱骨替代材料 19 2.4. 壓阻式壓力感測器 19 2.4.1. 壓阻式壓力感測器型式 20 2.4.2. 壓阻式壓力感測器基本原理 22 第 3 章 第三章、顱內高壓量測與引流實驗方法 24 3.1. 顱內壓力量測與腦室外引流的設計與製作 27 3.1.1. 藥丸型無線壓力感測模組及使用方法 28 3.1.2. 導管內有排氣設計 32 3.1.3. 導管內無排氣設計 35 3.2. 液面下壓力量測實驗 39 3.2.1.排氣三向閥引流實驗設計 39 3.2.2.無排氣三向閥引流實驗設計 41 3.2.3.溫度對於壓力量測的影響 42 3.2.4.量測結果分析 43 3.3. 體外模型 45 3.3.1. 矽膠模具製作 45 3.3.2. 腦組織材料調配 47 3.3.3. 腦實質壓縮模擬和驗證實驗 50 3.3.4. 網格大小及收斂性分析 52 3.4. 體外模型實驗驗證 54 3.4.1. 硬膜下和腦室內量測實驗 54 3.4.2. 常壓性腦積水實驗 56 3.4.3. 出血性顱內高壓實驗 58 第 4 章 第四章、顱內高壓量測與引流驗證結果 60 4.1. 液面下壓力量測結果 60 4.1.1. 排氣三向閥引流結果 60 4.1.2. 無排氣三向閥引流結果 63 4.1.3. 溫度對於壓力量測的影響 65 4.1.4.量測結果分析 67 4.2. 體外模型製作結果 69 4.2.1. 矽膠模具製作結果 69 4.2.2. 腦實質調配結果 71 4.2.3. 腦實質模擬和驗證實驗結果 73 4.3. 體外模型實驗驗證 79 4.3.1. 硬膜下和腦室內量測實驗 79 4.3.2. 常壓性腦積水結果 88 4.3.3. 出血性顱內高壓結果 93 第 5 章 第五章、結論與未來展望 100 5.1. 結論 100 5.2. 未來展望 101 第 6 章 第六章、參考文獻 102

    [1]Pinto, et al., Increased intracranial pressure, in StatPearls. 2022, StatPearls Publishing.
    [2]Gomes, et al.,Normal intracranial pressure physiology, in Cerebrospinal Fluid in Clinical Practice, D.N. Irani, Editor. 2009, W.B. Saunders: Philadelphia. p. 19-25.
    [3]Welch, et al., The Intracranial Pressure in Infants. Journal of Neurosurgery, 1980. 52(5): p. 693-699.
    [4]Rangel-Castilla, et al., Management of Intracranial Hypertension. Neurology Clinics, 2008. 26(2): p. 521-41.
    [5]Miller,et al., Significance of Intracranial Hypertension in Severe Head Injury. Journal of neurosurgery, 1977. 47(4): p. 503-516.
    [6]Georgiadis, et al., Chapter 52 - Critical Care Management of Acute Ischemic Stroke (Fourth Edition), J.P. Mohr, et al., Editors. 2004, Churchill Livingstone: Philadelphia. p. 987-1024.
    [7]Ravi, R. and R.J. Morgan, Intracranial Pressure Monitoring. Current Anaesthesia & Critical Care, 2003. 14(5): p. 229-235.
    [8]Dey, et al., External Ventricular Drainage for Intraventricular Hemorrhage. Current Neurology and Neuroscience Reports, 2012. 12(1): p. 24-33.
    [9]Gelabert-Gonzalez, et al., The Camino Intracranial Pressure Device in Clinical Practice. Assessment in a 1000 cases. Acta Neurochirurgica, 2006. 148(4): p. 435-441.
    [10]Belzberg, et al., Insertion of Intracranial Pressure Monitoring Catheter. Journal of neurosurgery , 2002. 45(4):p. 29-34.
    [11]Ghajar, et al., Intracranial pressure monitoring techniques. New Horizons (Baltimore, Md.), 1995. 3(3): p. 395-399.
    [12]Lang, E.W. and R.M. Chesnut, Intracranial Pressure Monitoring and Management. Neurosurgery Clinics of North America, 1994. 5(4): p. 573-605.
    [13]Foundation, et al., Recommendations for intracranial pressure monitoring technology. Journal of Neurotrauma, 2000. 17(6–7): p. 497-506.
    [14]Lundberg, et al., Continuous Recording of the Ventricular-Fluid Pressure in Patients with Severe AcuteTraumatic Brain Injury: A Preliminary Report. Journal of neurosurgery, 1965. 22(6): p. 581-590.
    [15]Rodriguez-Paras, et al., Evaluation of microcontroller wireless technology to enable a smart connected intensive care unit (ICU). 2017. SAGE Publications Sage CA: Los Angeles, CA.
    [16]Poncette, et al., Improvements in Patient Monitoring in the Intensive Care Unit: Survey Study. Journal of Medical Internet Research, 2020. 22(6): p. e19091.
    [17]Singhi, et al., Management of Intracranial Hypertension. The Indian Journal of Pediatrics, 2009. 76(5): p. 519-529.
    [18]Betz, et al., Brain Edema: A Classification Based on Blood-brain Barrier Integrity. Cerebrovasc Brain Metab Rev, 1989. 1(2): p. 133-54.
    [19]Iencean, et al., A new Classification Med Hypotheses. Medical Hypotheses, 2003. 61(1): p. 106-9.
    [20]Iencean, et al., Intracranial Hypertension: Classification and Patterns of Evolution. Journal of Medicine and Life, 2008. 1(2): p. 101-7.
    [21]Moraine, et al., Is Erebral Perfusion Pressure a Major Determinant of Cerebral Blood Flow During Head Elevation in Comatose Patients with Severe Intracranial Lesions. Journal of Neurosurgery, 2000. 92(4): p. 606-14.
    [22]Bateman, et al., Arterial Inflow and Venous Outflow in Idiopathic Intracranial Hypertension Associated with Venous Outflow Stenoses. Journal of Clinical Neuroscience, 2008. 15(4): p. 402-8.
    [23]Farb, et al., Idiopathic Intracranial Hypertension: The Prevalence and Morphology of Sinovenous Stenosis. Neurology, 2003. 60(9): p. 1418-24.
    [24]Ferro, J.M. and P. Canhão, Acute Treatment of Cerebral Venous and Dural Sinus Thrombosis. Current Treatment Options in Neurology, 2008. 10(2): p. 126-37.
    [25]Biousse,Tong,and N.J. Newman, Cerebral Venous Thrombosis. Current Treatment Options in Cardiovascular Medicine, 2003. 5(3): p. 181-192.
    [26]Milhorat, et al.,Classification of the Cerebral Edemas with Reference to Hydrocephalus and Pseudotumor Cerebri. Child's Nervous System, 1992. 8(6): p. 301-6.
    [27]Pukkila-Worley, and Mylonakis, Epidemiology and Management of Cryptococcal Meningitis: Developments and Challenges. Expert Opinion on Pharmacotherapy, 2008. 9(4): p. 551-60.
    [28]Salman, M.S., Benign Intracranial Hypertension or Communicating Hydrocephalus: Factors in Pathogenesis. Medical Hypotheses, 1997. 49(5): p. 371-3.
    [29]Iencean,St.M. Idiopathic Intracranial Hypertension Review and Hypothesis of the Pathogenesis. Research Journal of Medicine and Medical Sciences, 2006. 1(3): p. 104-108.
    [30]Donovan, et al., Cerebral Oedema and Increased Intracranial Pressure in Chronic Liver Disease. Lancet, 1998. 351(9104): p. 719-21.
    [31]Monro, et al., Observations on the Structure and Functions of the Nervous System. London Journal of Medicine ,1783. 4(2) : p113–135.
    [32]Cushing, H., Studies in Intracranial Physiology & Surgery, London. 1926,Oxford University Press.
    [33]Padayachy, L.C., Non-Invasive Intracranial Pressure Assessment. Child's Nervous System, 2016. 32(9): p. 1587-1597.
    [34]Lundberg, N., Continuous Recording and Control of Ventricular Fluid Pressure in Neurosurgical Practice. Acta Psychiatrica Scandinavica., 1960. 36(149): p. 1-193.
    [35]Smith, M., Monitoring Intracranial Pressure in Traumatic Brain Injury. Anesthesia & Analgesia, 2008. 106(1): p. 240-248.
    [36]Bloch, J. and L. Regli, Brain Stem and Cerebellar Dysfunction After Lumbar Spinal Fluid Drainage: Case Report. Journal of Neurology, Neurosurgery & Psychiatry, 2003. 74(7): p. 992-994.
    [37]Beer, et al., Nosocomial Ventriculitis and Meningitis in Neurocritical Care Patients. Journal of neurology, 2008. 255(11): p. 1617-1624.
    [38]Lozier, A.P., et al., Ventriculostomy-Related Infections: A Critical Review of the Literature. Neurosurgery, 2002. 51(1): p. 170-182.
    [39]Raboel, et al., Intracranial Pressure Monitoring: Invasive versus Non-Invasive Methods-A Review. Critical care research and practice, 2012.
    [40]Dasic, et al., External Ventricular Drain Infection: The Effect of a Strict Protocol on Infection Rates and a Review of the Literature. British journal of neurosurgery, 2006. 20(5): p. 296-300.
    [41]Ofoma, et al., Updates on Techniques and Technology to Optimize External Ventricular Drain Placement: A Review of the Literature. Clinical Neurology and Neurosurgery, 2022. 213: p. 107126.
    [42]Piper, et al., The Camino Intracranial Pressure Sensor: Is It Optimal Technology? An Internal Audit with a Review of Current Intracranial Pressure Monitoring Technologies. Neurosurgery, 2001. 49(5): p. 1158-1165.
    [43]Artru, et al., Monitoring of Intracranial Pressure with Intraparenchymal Fiberoptic Transducer. Annales Françaises d'Anesthésie et de Réanimation,1992. 11(4):p. 424-9
    [44]Abraham, M. and V. Singhal, Intracranial Pressure Monitoring. Journal of Neuroanaesthesiology and Critical Care, 2015. 2(03): p. 193-203.
    [45]Fernandes,et al., Clinical evaluation of the Codman microsensor intracranial pressure monitoring system, in Intracranial Pressure and Neuromonitoring in Brain Injury. 1998, Springer. p. 44-46.
    [46]Hong, W.-C., et al., Subdural Intracranial Pressure Monitoring in Severe Head Injury: Clinical Experience with the Codman MicroSensor. Surgical neurology, 2006. 66: p. 8-13.
    [47]Kiening, K., et al., Assessment of the relationship between age and continuous intracranial compliance, in Intracranial Pressure and Brain Monitoring XII. 2005, Springer. p. 293-297.
    [48]Hayreh, S.S., Pathogenesis of Oedema of The Optic Disc (papilloedema): A Preliminary Report. The British Journal of Ophthalmology, 1964. 48(10): p. 522.
    [49]Geeraerts, T., J. Duranteau, and D. Benhamou, Ocular Sonography in Patients with Raised Intracranial Pressure: The Papilloedema Revisited. Critical care, 2008. 12(3): p. 1-2.
    [50]Sahu, S. and A. Swain, Optic Nerve Sheath Diameter: A Novel Way to Monitor the Brain. Journal of Neuroanaesthesiology and Critical Care, 2017. 4(04): p. S13-S18.
    [51]Kristiansson, et al., Measuring Elevated Intracranial Pressure through Noninvasive Methods: A Review of the Literature. Journal of neurosurgical anesthesiology, 2013. 25(4): p. 372-385.
    [52] Michaeli, D. and Z.H. Rappaport, Tissue Resonance Analysis: A Novel Method for Noninvasive Monitoring of Intracranial Pressure. Journal of neurosurgery, 2002. 96(6): p. 1132-1137.
    [53]Wu, J., et al., Research on simulation and experiment of noninvasive intracranial pressure monitoring based on acoustoelasticity effects. Medical Devices (Auckland, NZ), 2013. 6: p. 123.
    [54]Chunyu, T., et al., The correlation between intracranial pressure and intraocular pressure after brain surgery. Int J Ophthalmol Eye Res, 2014. 2(5): p. 54-58.
    [55]Navarro-Lozoya, M., et al., Development of Phantom Material that Resembles Compression Properties of Human Brain Tissue for Training Models. Materialia, 2019.
    [56]Thomas, J.H., Fluid Dynamics of Cerebrospinal Fluid Flow in Perivascular Spaces. Journal of the Royal Society Interface, 2019. 16(159): p. 20190572.
    [57]Yetkin, et al., Cerebrospinal Fluid Viscosity: A Novel Diagnostic Measure for Acute Meningitis. Southern medical journal, 2010. 103(9): p. 892-895.
    [58]Bloomfield, I.G., I.H. Johnston, and L.E. Bilston, Effects of Proteins, Blood Cells and Glucose on the Viscosity of Cerebrospinal Fluid. Pediatr Neurosurg, 1998. 28(5): p. 246-51.
    [59]Von Barm, et al., Physical Model for Investigating Intracranial Pressure with Clinical Pressure Sensors and Diagnostic Ultrasound: Preliminary Results, in Intracranial Pressure and Neuromonitoring XVII, B. Depreitere, G. Meyfroidt, and F. Güiza, Editors. 2021, Springer International Publishing: Cham. p. 263-266.
    [60]Jiménez Ormabera, B.,et al., 3D Printing in Neurosurgery: A Specific Model for Patients with Craniosynostosis. Neurocirugía, 2017. 28(6): p. 260-265.
    [61]Stephanus Büttgenbach, I.C., Andreas Dietzel & Monika Leester-Schäde. Piezoresistive Pressure Sensors. Sensors and Actuators A: Physical ,1991. 15(7): p. 113-132.
    [62]Sujan, Y., G. Uma, and M. Umapathy, Design and Testing of Piezoelectric Resonant Pressure Sensor. Sensors and Actuators A: Physical, 2016. 250: p. 177-186.
    [63]Seaver, C.E. An Implantable Low Pressure, Low Drift, Dual BioPressure Sensor and In-Vivo Calibration Methods Thereof. Sensors and Actuators A: Physical ,2018. 24(2): p. 112-126.
    [64]Kenny,et al., Load and Stress Distribution in Screw Threads. Measurement, 2018, p: 208-217.
    [65]Katsuyuki Miyasaka, et al.,The Official Journal of the Anesthesia Patient Safety Foundation. Anesthesia & Analgesia ,2021,p:89-129.
    [66]Soukup, J., et al., The Importance of Brain Temperature in Patients After Severe Head Injury: Relationship to Intracranial Pressure, Cerebral Perfusion Pressure, Cerebral Blood Flow, and Outcome. Journal of neurotrauma, 2002. 19(5): p. 559-571.
    [67]Wang, H., et al., Brain Temperature and its Fundamental Properties: A Review for Clinical Neuroscientists. Frontiers in neuroscience, 2014. 12(8): p. 307.
    [68]Navarro-Lozoya, M., et al., Development of Phantom Material that Resembles Compression Properties of Human Brain Tissue for Training Models. Materialia, 2019. 8: p. 100438.
    [69]O'Brien, J.S. and E.L. Sampson, Lipid Composition of the Normal Human Brain: Gray Matter, White Matter, and Myelin. Journal of lipid research, 1965. 6(4): p. 537-544.
    [70]Rashid, B., M. Destrade, and M.D. Gilchrist, Determination of Friction Coefficient in Unconfined Compression of Brain Tissue. Journal of the Mechanical Behavior of Biomedical Materials, 2012. 14: p. 163-171.
    [71]Kawoos, et al., In-Vitro and In-Vivo Trans-Scalp Evaluation of An Intracranial Pressure Implant at 2.4 GHz. IEEE Transactions on Microwave Theory and Techniques, 2008. 56(10): p. 2356-2365.
    [72]Mendelow, et al., A Clinical Comparison of Subdural Screw Pressure Measurements with Ventricular Pressure. Journal of Neurosurgery, 1983. 58(1): p. 45-50.
    [73]Humphrey, et al., Caring for Neurosurgical Patients with External Ventricular Drains. Journal of Clinical Practice, 2018.12(7):p14-17
    [74]Janny, et al., Intracranial Pressure with Intracerebral Hemorrhages. Surgical Neurology International, 1978. 10(6): p. 371-5.
    [75]Babadjouni, et al., Neuroprotective Strategies Following Intraparenchymal Hemorrhage. Journal of NeuroInterventional Surgery, 2017. 9(12): p. 1202-1207.
    [76]Broderick, et al., Volume of Intracerebral Hemorrhage. A powerful and Easy-to-Use Predictor of 30-day Mortality. Stroke, 1993. 24(7): p. 987-93.
    [77]Kimura, et al., Hyperglycemia Independently Increases the Risk of Early Death in Acute Spontaneous Intracerebral Hemorrhage. Journal of the Neurological Sciences, 2007. 255(1-2): p. 90-4.
    [78]Budday, et al., Mechanical Characterization of Human Brain Tissue. Acta Biomater, 2017. 48: p. 319-340.
    [79]Bullock, et al., Recommendations for Intracranial Pressure Monitoring Technology. Journal of Neurotrauma, 1996. 13(11): p. 685-692.
    [80]North, et al., Comparison Among Three Methods of Intracranial Pressure Recording. Neurosurgery, 1986. 18(6): p. 730-732.
    [81]Ravi, et al., Intracranial Pressure Monitoring. Current Anaesthesia & Critical Care, 2003. 14(5-6): p. 229-235.
    [82]Sakka, et al., Anatomy and physiology of Cerebrospinal Fluid. Eur Ann Otorhinolaryngol Head Neck Dis, 2011. 128(6): p. 309-16.

    無法下載圖示 全文公開日期 2028/02/06 (校內網路)
    全文公開日期 2028/02/06 (校外網路)
    全文公開日期 2028/02/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE