簡易檢索 / 詳目顯示

研究生: BALRAJ MUTHUSAMY
BALRAJ MUTHUSAMY
論文名稱: 鎖定式鈦骨板治療長骨骨折的生物力學分析
Biomechanical Analyses of Titanium Locking Plates for Long Bone Fractures
指導教授: 趙振綱
Ching-Kong Chao
林晉
Jinn Lin
口試委員: 趙振綱
Ching-Kong Chao
林晉
Jinn Lin
王兆麟
Jaw-Lin Wang
黃榮芳
Rong-Fung Huang
徐慶琪
Ching-Chi Hsu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 104
中文關鍵詞: 鈦合金鎖定骨板有限元素分析合併孔部分螺紋移除大結節骨折肩關節復健運動
外文關鍵詞: Titanium locking plate, Finite element analysis, Merge hole, Partial thread removal, Greater tuberosity fractures, Shoulder rehabilitation activities
相關次數: 點閱:175下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎖定式骨板具有鎖固骨螺絲於骨板的特點,其主要用於長骨骨折的治療,尤其對於骨質疏鬆性骨折、粉碎性骨折和植體周圍骨折等問題,此有相對較佳的臨床治療成果。然而,過去許多的研究發現,用於治療長骨骨折的鎖定式骨板存在植體機械失效問題,此對骨折治療造成重大威脅。本論文的研究目的是使用生物力學測試與有限元素分析,探討鎖定式骨板合併孔洞的優化設計,並針對肱骨大粗隆骨折使用鎖定式骨板固定進生物力學研究。
    在鎖定式骨板合併孔洞的優化設計分析中,研究了螺釘孔合併、螺紋去除和螺釘孔偏移對鎖定式骨板力學性能的影響,包括:螺紋圓孔設計(Type I)、合併孔設計 (Type II)、合併孔去除部分螺紋設計(Type III)、螺紋偏置孔設計(Type IV),所有骨板合併孔洞生物力學研究,其分別執行有限元分析與機械實驗。研究結果發現,兩個圓形螺釘孔之間的最佳合併距離為3.5 mm,每個螺絲孔的周長為原孔洞的2/3。相較於 Type I 設計,Type II 和Type III 設計的骨板應力分別降低了6.42%和7.33%,然而,Type IV 設計的骨板應力會增加1.66%。在機械力學試驗中,Type II 和Type III 設計的疲勞壽命分別是Type I 設計的3.86 倍和7.16 倍,然而,相較於Type I 設計,Type IV 設計的疲勞壽命會降低37%。對於鎖定式螺釘的抗彎強度研究,所有鎖定式骨板螺絲孔設計的結果差異不大。整體而言,合併孔設計可降低螺絲孔應力,並顯著增加鎖定式骨板的疲勞壽命;鎖定式骨板採用部分螺紋去除設計,其可進一步的提升骨板疲勞壽命結果;鎖定式骨板採用合併孔與去除螺紋設計,其並不會減少鎖定式螺釘的抗彎強度;鎖定式骨板增加偏移孔的距離時,其疲勞壽命會顯著的降低。
    在肱骨骨折鎖定式骨板固定的肩關節生物力學研究中,肩關節復健運動對於鎖定式骨板固定的影響,將藉由有限元素分析與機械測試進行探討。在肱骨單一牽引力條件下的肱骨骨折治療評估,建立人體肱骨三維有限元模型,並考量外展、屈曲和水平屈曲的肩關節運動,此外,亦藉由生物力學測試進行相同負荷條件之機械實驗驗證。
    研究結果發現,有限元素分析與機械力學測試得到的勁度結果有高度相關,其相關係數為0.88。在肱骨考量實際肩關節運動之負荷條件下,肩關節於水平屈曲運動時有相對較大的骨折處位移結果(1.163 mm)、骨骼應力(60.6 MPa)、鎖定式骨板應力(29.1 MPa) 與平均的骨螺釘應力(37.3 MPa),因此,對於肩關節於執行骨折固定手術初期,水平屈曲運動相較於外展與屈曲運動是較不建議的。
    本研究對於鎖定式骨板議題可提供有用的建議與貢獻,藉由電腦數值模擬技術的建立,以及機械力學驗證測試的執行,可有效的評估與改善鎖定式骨板的機械性能,本研究建立的方法,其亦可應用於評估長骨骨折治療的新式植入物設計和固定治療策略。


    Locking plates with threaded holes, allowing screws to fasten to the plate, are mainly used for long bone fracture treatment especially when the purchase of conventional screws is poor like in osteoporotic bone fracture, comminuted fractures, and periprosthetic fractures. There have been increasing reports of the mechanical failure of locking plates used to treat long bone fractures, with substantial threats to fracture treatment. The objective of this dissertation was to evaluate the biomechanical strength of titanium locking plates by modifying the screw hole structures and biomechanical behavior of the shoulder joint with greater tuberosity (GT) fracture fixation with locking plates for the different rehabilitation activities by biomechanical tests and three-dimensional finite element analyses.
    In biomechanical analyses of locking plates, the effects of screw hole merging, thread removal, and screw hole offset on the mechanical properties of locking plates were investigated. Finite element models were used to develop the optimal design of the merged holes. Four titanium locking plates with different hole designs were analyzed. Type I had threaded round holes. Type II had merged holes. Type III had merged holes with partial thread removal. Type IV had threaded offset holes. Mechanical experiments similar to finite element analyses were conducted and compared. Screw bending tests were used to assess the screw holding power. Finite element analyses showed the optimal merging distance between two round screw holes was 3.5 mm with 2/3 circumferences in each hole. The stresses of types II and III were respectively 6.42% and 7.33%, lower than that of type I. The stress of type IV was 1.66% higher than that of type I. In the mechanical tests, the fatigue lives of types II and III were respectively 3.86 and 7.16 times higher than that of type I. The fatigue life of type IV was 37% lower than that of type I. The differences in the bending strengths of screws were insignificant. Merging holes could mitigate screw hole stress and increase the fatigue lives of the plates significantly. Partial thread removal could further improve the fatigue life. Merging holes and thread removal did not decrease the screw holding power significantly. The fatigue lives were significantly decreased in plates with offset holes.
    In biomechanical analyses of the shoulder joint with GT humerus fracture fixation with locking plates, the construct was investigated with rotator cuff function for shoulder rehabilitation activities for mechanical properties. A three-dimensional finite element model of the GT fracture treated humerus with a single traction force condition was analyzed for abduction, flexion, and horizontal flexion activities and validated by the biomechanical tests. The results showed that the stiffness calculated by the numerical models was closely related to that obtained by the mechanical tests with a correlation coefficient of 0.88. Under realistic rotator cuff muscle loading, the shoulder joint had larger displacement at the fracture site (1.163 mm), higher bone stress (60.6 MPa), higher plate stress (29.1 MPa), and higher mean screw stress (37.3 MPa) in horizontal flexion rehabilitation activity compared to that abduction and flexion activities. The horizontal flexion may not be suggested in the early stage of shoulder joint rehabilitation activities.
    We believe that our study makes a significant contribution to the field and clinical work because the developed mathematical models can be effectively used for numerical analyses and to improve the mechanical properties of the locking plates. Also, these methodologies could be used to evaluate new implant designs and fixation strategies for the long bone fracture treatment.

    ABSTRACT (摘要) 2 ABSTRACT 3 ACKNOWLEDGEMENT 6 TABLE OF CONTENTS 7 List of Figures 9 List of Tables 12 Chapter 1 Introduction 13 1.1 Research Background 13 1.2 Evolution of Locking Plates 15 1.3 Bone plate materials 16 1.4 Research objective 16 1.5 Structure of Dissertation 17 Chapter 2 Effects of merged holes, partial thread removal, and offset holes on fatigue strengths of titanium locking plates 19 2.1 Introduction 19 2.2 Methods 20 2.2.1 Locking plate model geometry and mesh 20 2.2.2 Material properties 22 2.2.3 Boundary and loading conditions 22 2.2.4 Convergence analysis 23 2.2.5 Optimization of the plate with two round holes 23 2.2.6 Optimization of the plate with three optimal merged holes 25 2.2.7 Parametric analyses of the plates with three offset holes 26 2.2.8 Stress analyses of locking plates 27 2.2.9 Mechanical cyclic loading test 27 2.2.10 Mechanical screw bending tests 32 2.2.11 Statistical analysis 33 2.3 Results 34 2.3.1 Finite element analysis 34 2.3.2 Convergence test 34 2.3.3 Optimization of the plate with two round holes 35 2.3.4 Optimization of the plate with three optimal merged holes 37 2.3.5 Parametric analyses of the plates with three offset holes 39 2.3.6 FEA results of I-IV types locking plates 41 2.3.7 Results of mechanical tests 43 2.3.8 Screw bending tests 54 2.4 Discussion 58 2.5 Summary 61 Chapter 3 Numerical and experimental investigations of humeral greater tuberosity fracture with a plate fixation under different shoulder rehabilitation activities 62 3.1. Research background and study purpose 62 3.2. Materials and Methods 74 3.2.1. Numerical modeling of humerus GT fracture with plate fixation under mechanical testing loading 74 3.2.2. Mechanical tests of shoulder rehabilitation activities 75 3.2.3 Statistical analysis 79 3.2.4 Numerical modeling of injured shoulder joint with plate fixation under realistic rotator cuff muscle loading 79 3.3. Results 82 3.3.1. Finite element simulation under mechanical testing loadings 82 3.3.2. Mechanical testing outcomes 82 3.3.3. Finite element simulation under the realistic rotator cuff muscle loading 84 3.4. Discussion 86 3.5. Summary 89 Chapter 4 Conclusion and Recommendations 91 4.1 Conclusion 91 4.2 Recommendations and future studies 92 References 93

    1.Einhorn, T.A. The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 1998, 355, S7-S21;
    2.Giannoudis, P.; Tzioupis, C.; Almalki, T.; Buckley, R. Fracture healing in osteoporotic fractures: Is it really different?: A basic science perspective. Injury 2007, 38, S90-S99; doi:doi.org/10.1016/j.injury.2007.02.014.
    3.Siwach, R.; Singh, R.; Rohilla, R.K.; Kadian, V.S.; Sangwan, S.S.; Dhanda, M. Internal fixation of proximal humeral fractures with locking proximal humeral plate (lphp) in elderly patients with osteoporosis. ORTHOP TRAUMATOL-SUR 2008, 9, 149-153; doi:DOI 10.1007/s10195-008-0014-6.
    4.Miranda, M.A. Locking plate technology and its role in osteoporotic fractures. Injury 2007, 38, 35-39; doi:doi.org/10.1016/j.injury.2007.08.009.
    5.Bel, J.-C. Pitfalls and limits of locking plates. Orthopaedics & Traumatology: Surgery & Research 2019, 105, S103-S109; doi:https://doi.org/10.1016/j.otsr.2018.04.031.
    6.Piétu, G.; Ehlinger, M.J.O.; Surgery, T.; Research. Minimally invasive internal fixation of distal femur fractures. Orthopaedics & Traumatology: Surgery & Research. 2017, 103, S161-S169;
    7.Augat, P.; von Rüden, C.J.I. Evolution of fracture treatment with bone plates. Injury 2018, 49, S2-S7;
    8.Beltran, M.J.; Collinge, C.A.; Gardner, M.J.J.J.o.t.A.A.o.O.S. Stress modulation of fracture fixation implants. J Am Acad Orthop Surg 2016, 24, 711-719;
    9.Gueorguiev, B.; Lenz, M.J.I. Why and how do locking plates fail? Injury 2018, 49, S56-S60; doi:https://doi.org/10.1016/s0020-1383(18)30305-x.
    10.Uhthoff, H.K.; Poitras, P.; Backman, D.S. Internal plate fixation of fractures: Short history and recent developments. J Orthop Sci 2006, 11, 118-126; doi:doi 10.1007/s00776-005-0984-7.
    11.Frigg, R. Locking compression plate (lcp). An osteosynthesis plate based on the dynamic compression plate and the point contact fixator (pc-fix). Injury 2001, 32, 63-66;
    12.Frigg, R. Development of the locking compression plate. Injury 2003, 34, B6-10; doi:DOI: 10.1016/j.injury.2003.09.020
    13.Miller, D.L.; Goswami, T. A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. clinbiomech 2007, 22, 1049-1062; doi:https://doi.org/10.1016/j.clinbiomech.2007.08.004.
    14.Joshi, G.; Naveen, B. Comparative study of stainless steel and titanium limited contact-dynamic compression plate application in the fractures of radius and ulna. Wolters Kluwer - Medknow 2019, 12, 256; doi:10.4103/mjdrdypu.mjdrdypu_140_18.
    15.Hsu, C.-C.; Yongyut, A.; Chao, C.-K.; Lin, J. Notch sensitivity of titanium causing contradictory effects on locked nails and screws. Medical Engineering & Physics 2010, 32, 454-460; doi:https://doi.org/10.1016/j.medengphy.2010.03.006.
    16.Hung, L.; Chao, C.; Huang, J.; Lin, J.J.B.; research, j. Screw head plugs increase the fatigue strength of stainless steel, but not of titanium, locking plates. Bone Joint Res 2018, 7, 629-635;
    17.Prasad, K.; Bazaka, O.; Chua, M.; Rochford, M.; Fedrick, L.; Spoor, J.; Symes, R.; Tieppo, M.; Collins, C.; Cao, A. Metallic biomaterials: Current challenges and opportunities. Materials 2017, 10, 884; doi:doi:10.3390/ma10080884.
    18.Sommer, C.; Babst, R.; Muller, M.; Hanson, B. Locking compression plate loosening and plate breakage: A report of four cases. J Orthop Trauma 2004, 18, 571-577; doi:10.1097/00005131-200409000-00016.
    19.Vallier, H.A.; Hennessey, T.A.; Sontich, J.K.; Patterson, B.M. Failure of lcp condylar plate fixation in the distal part of the femur. A report of six cases. J Bone Joint Surg Am 2006, 88, 846-853; doi:10.2106/JBJS.E.00543.
    20.Gardner, M.J.; Evans, J.M.; Dunbar, R.P. Failure of fracture plate fixation. J Am Acad Orthop Surg 2009, 17, 647-657; doi:10.5435/00124635-200910000-00007.
    21.Hoffmann, M.F.; Jones, C.B.; Sietsema, D.L.; Tornetta, P., 3rd; Koenig, S.J. Clinical outcomes of locked plating of distal femoral fractures in a retrospective cohort. J Orthop Surg Res 2013, 8, 43; doi:10.1186/1749-799X-8-43.
    22.Arnone, J.C.; Sherif El-Gizawy, A.; Crist, B.D.; Della Rocca, G.J.; Ward, C.V. Computer-aided engineering approach for parametric investigation of locked plating systems design. J. Med. Devices 2013, 7, 021001; doi:https://doi.org/10.1115/1.4024644.
    23.Kanchanomai, C.; Muanjan, P.; Phiphobmongkol, V. Stiffness and endurance of a locking compression plate fixed on fractured femur. J. Appl. Biomech. 2010, 26, 10–16; doi:https://doi.org/10.1123/jab.26.1.10.
    24.Smith, W.R.; Ziran, B.H.; Anglen, J.O.; Stahel, P.F. Locking plates: Tips and tricks. J. Bone Jt. Surg. 2007, 89, 2298-2307; doi:https://doi.org/10.2106/00004623-200710000-00028.
    25.Strauss, E.J.; Schwarzkopf, R.; Kummer, F.; Egol, K.A. The current status of locked plating: The good, the bad, and the ugly. J. Orthop. Trauma 2008, 22, 479–486; doi:https://doi.org/10.1097/BOT.0b013e31817996d6.
    26.Gautier, E.; Sommer, C. Guidelines for the clinical application of the lcp. Injury 2003, 34, 63-76; doi:http://dx.doi.org/10.1016/j.injury.2003.09.026.
    27.Kanchanomai, C.; Phiphobmongkol, V.; Muanjan, P. Fatigue failure of an orthopedic implant – a locking compression plate. Eng. Fail. Anal. 2008, 15, 521-530; doi:https://doi.org/10.1016/j.engfailanal.2007.04.001.
    28.Hoffmeier, K.L.; Hofmann, G.O.; Muckley, T. Choosing a proper working length can improve the lifespan of locked plates. A biomechanical study. Clin. Biomech. 2011, 26, 405–409; doi:https://doi.org/10.1016/j.clinbiomech.2010.11.020.
    29.Chao, C.-K.; Chen, Y.-L.; Lin, J. Half-threaded holes markedly increase the fatigue life of locking plates without compromising screw stability. Bone Joint Res 2020, 9, 645-652; doi:https://doi.org/10.1302/2046-3758.910.bjr-2019-0237.r2.
    30.Lin, C.-H.; Chao, C.-K.; Ho, Y.-J.; Lin, J. Modification of the screw hole structures to improve the fatigue strength of locking plates. Clin Biomech 2018, 54, 71-77; doi:https://doi.org/10.1016/j.clinbiomech.2018.03.011.
    31.Tseng, W.-J.; Chao, C.-K.; Wang, C.-C.; Lin, J. Notch sensitivity jeopardizes titanium locking plate fatigue strength. Injury 2016, 47, 2726-2732; doi:https://doi.org/10.1016/j.injury.2016.09.036.
    32.Molinari, G.; Giaffreda, G.; Clementi, D.; Cabbanè, G.; Galmarini, V.; Capelli, R.M. Surgical treatment of peri-prosthetic femur fractures with dedicated ncb plates: Our experience. Acta Biomed 2020, 91, 297-304; doi:https://doi.org/10.23750/abm.v91i2.8608.
    33.Wähnert, D.; Schröder, R.; Schulze, M.; Westerhoff, P.; Raschke, M.; Stange, R. Biomechanical comparison of two angular stable plate constructions for periprosthetic femur fracture fixation. Int Orthop. 2014, 38, 47-53; doi:https://doi.org/10.1007/s00264-013-2113-0.
    34.Burkhart, T.A.; Andrews, D.M.; Dunning, C.E. Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. J Biomech 2013, 46, 1477-1488; doi:10.1016/j.jbiomech.2013.03.022.
    35.Nagpal, S.; Jain, N.; Sanyal, S. Stress concentration and its mitigation techniques in flat plate with singularities-a critical review. Eng. J. 2012, 16, 1-16; doi:http://dx.doi.org/10.4186/ej.2012.16.1.1.
    36.Wankar, A.; Mishra, H. Topology optimization of rectangular plate having central circular hole & provision of auxiliary holes to reduce scf. Int Res J Eng Technol. 2016, 03;
    37.Othman, A.; Jadee, K.J.; Ismadi, M. Mitigating stress concentration through defense hole system for improvement in bearing strength of composite bolted joint, part 1: Numerical analysis. J. Compos. Mater. 2017, 51, 3685-3699; doi:http://dx.doi.org/10.1177/0021998317692396.
    38.Nagpal, S.; Sanyal, S.; Jain, N. Mitigation curves for determination of relief holes to mitigate stress concentration factor in thin plates loaded axially for different discontinuities. Int. j. eng. innov. technol. 2012, 2, 1-7;
    39.Chao, C.-K.; Chen, Y.-L.; Wu, J.-M.; Lin, C.-H.; Chuang, T.-Y.; Lin, J. Contradictory working length effects in locked plating of the distal and middle femoral fractures―a biomechanical study. Clin Biomech 2020, 80, 105198; doi:https://doi.org/10.1016/j.clinbiomech.2020.105198.
    40.Hayes, J.; Richards, R. The use of titanium and stainless steel in fracture fixation. Expert Rev. Med. Devices 2010, 7, 843-853; doi:https://doi.org/10.1586/erd.10.53.
    41.Dick, J.C.; Bourgeault, C.A. Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. SPINE 2001, 26, 1668-1672; doi:https://doi.org/10.1097/00007632-200108010-00008.
    42.Chen, P.-Q.; Lin, S.-J.; Wu, S.-S.; So, H. Mechanical performance of the new posterior spinal implant: Effect of materials, connecting plate, and pedicle screw design. SPINE 2003, 28, 881-886; doi:https://doi.org/10.1097/01.brs.0000058718.38533.b8.
    43.Kääb, M.J.; Frenk, A.; Schmeling, A.; Schaser, K.D.; Schütz, M.A.; Haas, N.P. Locked internal fixator: Sensitivity of screw/plate stability to the correct insertion angle of the screw. J. Orthop. Trauma 2004, 18, 483-487; doi:https://doi.org/10.1097/00005131-200409000-00002.
    44.Brinkman, J.-M.; Hurschler, C.; Agneskirchner, J.; Lobenhoffer, P.; Castelein, R.M.; van Heerwaarden, R.J. Biomechanical testing of distal femur osteotomy plate fixation techniques: The role of simulated physiological loading. J. Exp. Orthop. 2014, 1, 1; doi:https://doi.org/10.1186/s40634-014-0001-1.
    45.Stambough, J.L.; Genaidy, A.M.; Huston, R.L.; Serhan, H.; El-khatib, F.; Sabri, E.H. Biomechanical assessment of titanium and stainless steel posterior spinal constructs: Effects of absolute/relative loading and frequency on fatigue life and determination of failure modes. J Spinal Disord 1997, 10, 473-481;
    46.Gruson, K.I.; Ruchelsman, D.E.; Tejwani, N.C. Isolated tuberosity fractures of the proximal humerus: Current concepts. Injury 2008, 39, 284-298; doi:10.1016/j.injury.2007.09.022.
    47.Mutch, J.; Laflamme, G.; Hagemeister, N.; Cikes, A.; Rouleau, D. A new morphological classification for greater tuberosity fractures of the proximal humerus: Validation and clinical implications. Bone Joint J 2014, 96, 646-651; doi:10.1302/0301-620x.96b5.32362.
    48.Gillespie, R.J.; Johnston, P.S.; Gordon, V.A.; Ward, P.J.; Getz, C.L. Using plate osteosynthesis to treat isolated greater tuberosity fractures. Am J. Orthop. 2015, 44, E248-251;
    49.Park, S.-E.; Jeong, J.-J.; Panchal, K.; Lee, J.-Y.; Min, H.-K.; Ji, J.-H. Arthroscopic-assisted plate fixation for displaced large-sized comminuted greater tuberosity fractures of proximal humerus: A novel surgical technique. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 3892-3898; doi:10.1007/s00167-015-3805-3.
    50.Bogdan, Y.; Gausden, E.B.; Zbeda, R.; Helfet, D.L.; Lorich, D.G.; Wellman, D.S. An alternative technique for greater tuberosity fractures: Use of the mesh plate. Arch Orthop Trauma Surg 2017, 137, 1067-1070; doi:10.1007/s00402-017-2715-x.
    51.Ma, J.; Zhao, L.; Liu, T.; Fu, Q.; Chen, A. A retrospective study in the treatment of a 2-part greater tuberosity fracture using the f3 biomet plate. Int J Surg 2016, 101, 465-472; doi:10.9738/INTSURG-D-16-00106.1.
    52.Lin, C.-L.; Yeh, M.-L.; Su, F.-C.; Wang, Y.-C.; Chiang, C.-H.; Hong, C.-K.; Su, W.-R. Different suture anchor fixation techniques affect contact properties in humeral greater tuberosity fracture: A biomechanical study. BMC Musculoskelet. Disord. 2019, 20, 1-10; doi:10.1186/s12891-019-2412-8.
    53.St-Jean, B.L.; Ménard, J.; Hinse, S.; Petit, Y.; Rouleau, D.M.; Beauchamp, M. Braided tape suture provides superior bone pull-through strength than wire suture in greater tuberosity of the humerus. J. Orthop. 2015, 12, S14-S17; doi:10.1016/j.jor.2015.01.025.
    54.Knierzinger, D.; Heinrichs, C.H.; Hengg, C.; Konschake, M.; Kralinger, F.; Schmoelz, W. Biomechanical evaluation of cable and suture cerclages for tuberosity reattachment in a 4-part proximal humeral fracture model treated with reverse shoulder arthroplasty. J. Shoulder Elb. Surg. 2018, 27, 1816-1823; doi:10.1016/j.jse.2018.04.003.
    55.Palumbo, B.T.; Gutierrez, S.; Santoni, B.; Mighell, M. Biomechanical investigation of locked plate fixation with suture augmentation in a comminuted three-part proximal humerus fracture model. Open J. Orthop. 2017, 7, 180; doi:10.4236/ojo.2017.77020.
    56.Gaudelli, C.; Ménard, J.; Mutch, J.; Laflamme, G.-Y.; Petit, Y.; Rouleau, D.M. Locking plate fixation provides superior fixation of humerus split type greater tuberosity fractures than tension bands and double row suture bridges. Clin Biomech (Bristol, Avon) 2014, 29, 1003-1008; doi:10.1016/j.clinbiomech.2014.08.013.
    57.Lin, C.-L.; Su, F.-C.; Chang, C.-H.; Hong, C.-K.; Jou, I.-M.; Lin, C.-J.; Su, W.-R. Effect of shoulder abduction on the fixation of humeral greater tuberosity fractures: A biomechanical study for three types of fixation constructs. J. Shoulder Elb. Surg. 2015, 24, 547-554; doi:10.1016/j.jse.2014.09.032.
    58.Brais, G.; Ménard, J.; Mutch, J.; Laflamme, G.-Y.; Petit, Y.; Rouleau, D.M. Transosseous braided-tape and double-row fixations are better than tension band for avulsion-type greater tuberosity fractures. Injury 2015, 46, 1007-1012; doi:10.1016/j.injury.2015.02.007.
    59.Osterhoff, G.; Baumgartner, D.; Favre, P.; Wanner, G.A.; Gerber, H.; Simmen, H.-P.; Werner, C.M. Medial support by fibula bone graft in angular stable plate fixation of proximal humeral fractures: An in vitro study with synthetic bone. J Shoulder Elbow Surg 2011, 20, 740-746; doi:10.1016/j.jse.2010.10.040.
    60.Burke, N.G.; Kennedy, J.; Cousins, G.; Fitzpatrick, D.; Mullett, H. Locking plate fixation with and without inferomedial screws for proximal humeral fractures: A biomechanical study. J Orthop Surg (Hong Kong) 2014, 22, 190-194; doi:10.1177/230949901402200215.
    61.Zhang, W.; Zeng, L.; Liu, Y.; Pan, Y.; Zhang, W.; Zhang, C.; Zeng, B.; Chen, Y. The mechanical benefit of medial support screws in locking plating of proximal humerus fractures. PLoS One 2014, 9, e103297; doi:10.1371/journal.pone.0103297.
    62.Shen, L.; Zhang, W.; Wang, Q.; Chen, Y. Establishment of a three-dimensional finite element model and biomechanical analysis of three different internal fixation methods for humeral greater tuberosity fracture. Int J Clin Exp Med 2018, 11, 3245-3254;
    63.Varga, P.; Inzana, J.A.; Gueorguiev, B.; Südkamp, N.P.; Windolf, M. Validated computational framework for efficient systematic evaluation of osteoporotic fracture fixation in the proximal humerus. Med Eng Phys 2018, 57, 29-39; doi:10.1016/j.medengphy.2018.04.011.
    64.Fletcher, J.W.; Windolf, M.; Richards, R.G.; Gueorguiev, B.; Buschbaum, J.; Varga, P. Importance of locking plate positioning in proximal humeral fractures as predicted by computer simulations. J. Orthop. Res. 2019, 37, 957-964; doi:10.1002/jor.24235.
    65.Feerick, E.M.; Kennedy, J.; Mullett, H.; FitzPatrick, D.; McGarry, P. Investigation of metallic and carbon fibre peek fracture fixation devices for three-part proximal humeral fractures. Med Eng Phys 2013, 35, 712-722; doi:10.1016/j.medengphy.2012.07.016.
    66.Lee, C.-H.; Hsu, C.-C.; Huang, P.-Y. Biomechanical study of different fixation techniques for the treatment of sacroiliac joint injuries using finite element analyses and biomechanical tests. Comput. Biol. Med. 2017, 87, 250-257; doi:10.1016/j.compbiomed.2017.06.007.
    67.Ausiello, P.; Ciaramella, S.; Di Rienzo, A.; Lanzotti, A.; Ventre, M.; Watts, D.C. Adhesive class i restorations in sound molar teeth incorporating combined resin-composite and glass ionomer materials: Cad-fe modeling and analysis. Dent Mater 2019, 35, 1514-1522; doi:https://doi.org/10.1016/j.dental.2019.07.017.
    68.Campaner, L.M.; Silveira, M.P.M.; de Andrade, G.S.; Borges, A.L.S.; Bottino, M.A.; Dal Piva, A.M.d.O.; Lo Giudice, R.; Ausiello, P.; Tribst, J.P.M. Influence of polymeric restorative materials on the stress distribution in posterior fixed partial dentures: 3d finite element analysis. Polymers 2021, 13, 758; doi:https://doi.org/10.3390/polym13050758.
    69.Salemizadeh Parizi, F.; Mehrabi, R.; Karamooz-Ravari, M.R.J.P.o.t.I.o.M.E., Part H: . Finite element analysis of niti self-expandable heart valve stent. Proc Inst Mech Eng H P I MECH ENG H 2019, 233, 1042-1050; doi:https://doi.org/10.1177%2F0954411919865404.
    70.Ye, Y.; You, W.; Zhu, W.; Cui, J.; Chen, K.; Wang, D. The applications of finite element analysis in proximal humeral fractures. Comput. Math. Methods Med. 2017, 2017; doi:https://doi.org/10.1155/2017/4879836.
    71.Wu, W.; Lee, P.V.; Bryant, A.L.; Galea, M.; Ackland, D.C. Subject-specific musculoskeletal modeling in the evaluation of shoulder muscle and joint function. J. Biomech. 2016, 49, 3626-3634; doi:10.1016/j.jbiomech.2016.09.025.
    72.Curtis, A.S.; Burbank, K.M.; Tierney, J.J.; Scheller, A.D.; Curran, A.R. The insertional footprint of the rotator cuff: An anatomic study. Arthroscopy 2006, 22, 603-609. e601; doi:10.1016/j.arthro.2006.04.001.
    73.Ji, J.-H.; Shafi, M.; Song, I.-S.; Kim, Y.-Y.; McFarland, E.G.; Moon, C.-Y. Arthroscopic fixation technique for comminuted, displaced greater tuberosity fracture. Arthroscopy 2010, 26, 600-609; doi:10.1016/j.arthro.2009.09.011.
    74.Mihata, T.; Fukuhara, T.; Jun, B.J.; Watanabe, C.; Kinoshita, M. Effect of shoulder abduction angle on biomechanical properties of the repaired rotator cuff tendons with 3 types of double-row technique. Am J Sports Med 2011, 39, 551-556; doi:10.1177/0363546510388152.

    QR CODE