簡易檢索 / 詳目顯示

研究生: 張士浤
Shi-Hung Chang
論文名稱: 由生質柴油餾餘物中分離米糠醇
Isolation of gamma oryzanol from residue of biodiesel
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: 陳志平
Chih-Ping Chen
蔡少偉
Shao-Wei Tsai
林俊一
Chun-I Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 38
中文關鍵詞: 米糠醇米糠油生質柴油矽膠管柱層析法
外文關鍵詞: rice bran oil, biodiesel, gamma oryzanol, silica gel column chromatography
相關次數: 點閱:193下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於生產生質柴油,米糠油是相當便宜的原料用油。若能純化分離出米糠的高附加價值的副產物,如由萃完油的米糠中分離蛋白質,碳水化合物,或由生質柴油餾餘物中分離米糠醇,希望利用這些高附加價值的副產物進而降低生質柴油的成本。

    米糠油含有1.8~3.0%米糠醇。米糠醇在食物,化妝品,製藥的工業上有重大的應用。該研究以米糠油為原料,於製造生質柴油的過程中的餾餘物分離米糠醇。在第一階段程序中,經由除膠除蠟,酸催化酯化反應,低壓蒸餾,將米糠醇的純率提高至16.18% (總回收率:83.62%),在低壓蒸餾中,95%的低沸點物質如游離脂肪酸,脂肪酸甲基酯可被移除。在餾餘物中含有高含量的甘油酯,利用酵素催化酯化反應,將甘油酯轉化為脂肪酸甲基酯。以此反應後的餾餘物為基質,利用矽膠管柱層析法,收集米糠醇。米糠醇由16.18%提高到73.75%(總回收率:66.88%)


    Rice bran oil (RBO) is an inexpensive raw material for the production of biodiesel. Utilization of by-product such as defatted rice bran for the production of proteins, carbohydrates, phytochemical, and the isolation and purification of value-added nutraceuticals generated, such as -oryzanol and tocos, during biodiesel production from RBO are attractive options to lower the cost of biodiesel.
    Crude RBO contains 1.8~3.0% -oryzanol. -Oryzanol has important applications in food, cosmetic and pharmaceutical industry. The object of this investigation is to isolate -oryzanol from residue obtained during the production of biodiesel from RBO. Using RBO as the starting substrate, the content of -oryzanol could be raised to 16.18 % (recovery 83.62%) by a series of steps which included degumming, acid-catalyzed esterification and vacuum distillation (3.4~3.6×10-2 torr, 192oC). In the distillation step, more than 95% of low-boiling point components, such as free fatty acid (FFA) and fatty acid methyl ester (FAME) could be distilled. After distillation, diglyceride and triglyceride in the residue were converted into FAME by enzyme (Novozyme 435) catalyzed esterification. The organic phase of the reaction product was then subjected to silica gel column chromatography. After collecting the oryzanol enriched fraction and removing the solvent, the content of -oryzanol could be raised from 16.18 % to 73.75 % with a recovery of 79.75% (total recovery 66.88%).

    Contents Abstract...……………….……………………………………………...1 Chapter 1 Introduction 1-1 Biodiesel: Potential Resource...............................................................2 1-2 Rice Bran Oil…...…………………………………………………….5 1-3 Objective of This Study………………………………………………7 Chapter 2 Background and Literature Survey 2-1Gamma oryzanol………………………….………………………..8 2-2Literature Survey on Isolation of oryzanol……………….……….10 2-2.1 Calcium Ion Induced Precipitation……………………………..10 2-2.2 Preparative Column Chromatography………………………….12 2-2.3 Supercritical Fluid Extraction.…………………………...…….13 Chapter 3 Materials and Methods 3-1 Material…………………………………………………………......15 3-2 Equipment………………………………………………………......15 3-3 Methods 3-3.1 HTGC Analysis…...………………………………..…………..17 3-3.2 HPLC Quantification of -oryzanol………...…..………...........17 3-3.3 UV Quantification of -oryzanol ………………………………18 3-3.4 Effect of Temperature on the Degradation of -oryzanol……....18 3-3.5 Storage of Rice Bran and the Extraction of Rice Bran Oil..…...18 3-3.6 Dewaxing and Degumming……………………………………19 3-3.7 Two-Step Acid Catalyzed Methanolysis….……………………19 3-3.8 Distillation of FAME…………………………………………...20 3-3.9 Lipase-Catalyzed Esterification………..………………………20 3-3.10 Silica Gel Column Chromatography………………………….21 Chapter 4 Results and Discussion 4-1 HTGC analysis of -oryzanol………………………………………23 4-2 Quantification of -oryzanol by HPLC……………………………..23 4-3 Quantification of -oryzanol by UV spectrophotometry…………...25 4-4 Effect of Temperature on Degradation of oryzanol.……………..27 4-5 Acid-Catalyzed Esterification and Vacuum Distillation….………...28 4-6 Enzyme Catalyzed Esterification..……….…………………………30 4-7 Effect of Phosopholipid in Enzyme Esterification………………….32 4-8 Silica Gel Column Chromatography…….………………………….33 Chapter 5 Conclusions References…………………………………………………………….37 Figures Legend Fig 1-1.1 Study: A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emission……………………………………………4 Fig 1-1.2 Reaction Mechanism of Transesterification……………..........4 Fig 1-1.3 The Costs of Biodiesel Production……………………………5 Fig 1-2 Rice bran structure…………………………………………….6 Fig 2-1 Molecular structures of identified components of -oryzanol..10 Fig 2-2 Calcium Ion Induced Precipitation of Anionic Micellar Aggregate…………………………………………………...12 Fig 3 The overall procedure of isolating oryzanol from residue of biodiesel……………………………………………………..22 Fig 4-1.1 HTGC analysis of oryzanol standard……………………....23 Fig 4-2.1 HPLC analysis of oryzanol standard………………………24 Fig 4-2.2 HPLC Calibration Curve……………………………………..25 Fig 4-3.1 UV analysis of oryzanol standard…………………………26 Fig 4-3.2 UV Calibration Curve………………………………………...27 Fig 4-4 Effect of Temperature and Time on Degradation of oryzanol……………………………………………………28 Fig 4-5.1 HTGC Analysis of RBO and Ester A…………………………29 Fig 4-5.2 HTGC Analysis of Ester A and Residue ………...…………...29 Fig 4-6.1 Time Course of Enzyme Esterification………………..……...31 Fig 4-6.2 HTGC Analysis of Residue and Reacted Residue…...……….32 Fig 4-7 Effect of Phospholipid In Enzyme Esterification…..…………..33 Fig 4-8.1 HTGC Analysis of Low Polar Component ………………….34 Fig 4-8.2 HTGC Analyses of -oryzanol Enrich Fraction…………...….35 Tables Legend Table 1-1 Characteristics of biodiesel and diesel fuel……………………5 Table 1-2 Composition of RBO…………………………………………..6 Table 4-2 Concentration and absorbance area of -oryzanol (HPLC)…..24 Table 4-3 Concentrations and peak absorbencies of -oryzanol(UV)…..26 Table 4-5 Composition of RBO and Ester A by HTGC analysis………..30 Table 4-6 Composition of residue and reacted residue by HTGC analysis (area %)……………………………………………………...31 Table 4-8.1 Eluent composition…………………………………………34 Table 4-8.2 oryzanol content and recovery in oryzanol enriched fraction …...………………………………………………..34

    References

    Anjana, S. and P. Ram, Triglyceride-Based Diesel Fuels. Renew. Sust. Energ. Rev. 4, 124-125 (2000)

    Ma, F. and A. H. Milford, Biodiesel Production: A Review. Bioresour.
    Technol. 70, 1-15 (1999)

    Heramitsu, T. and D. Armstrong,. Preventive Effect of Antioxidants on Lipid Peroxidation in the Retina. Ophthalmic Res. 23, 196-199 (1991)

    Hayafune, K. and B. Sato, Puff Cream, Chou Creme Confectionery And
    Production Thereof, Japanese Patent JP02255037A2 (1990)

    Itou, N., Nail Color Giving Stable Color - Contain -oryzanol, Japanese Patent JP02290806A2 (1990)

    Ito, M., C. T. Hsu, K. Shichiso, and I. Sekine, Effect of -Oryzanol on Experimental Liver Cirrhosis in Spontaneously Hypertensive, J. Clin Biochem. Nutr. 12, 193-197(1992)

    Krawczyk, T., Biodiesel-Alternative Fuel Makes Inroads but Hurdles Remain. Inform, 7, 801-829 (1996)

    Kaneko, R.A. and T. Tsuchiya, New Compound in Rice Bran and Germ Oils. Kogyo kagaku Zasshi, 57, 526-529 (1954)

    Minami, N. and B. Morito, Conditions for Using Oryzanol and Its
    Utilization in Food, New Food Industries, 24, 49-53 (1982)

    Nakahara, A., Tool for Preventing Growth of Weed, Japanese Patent
    JP08232229A2 (1996)

    Prasanta, K. D., C. Arabinda, N. B. K. Thengumpillil and T. B. Uday, Isolation of Oryzanol Though Calcium Ion Precipitation of Anionic Micellar Aggregate, J. Agric. Food Chem. 46, 3073-3080 (1998)

    Pryde, A. and R. Henry, Vegetable Oils as Diesel Fuel: Overview, J. Am. Oil
    Chem. Soc. 60, 1557-1559 (1983)

    Piironen, V., G. L. David, A. M. Tatu, T. Jari and A. M. Lampi, Plant Sterol:
    Biosynthesis, Biological Function and Their Importance to Human Nutrition, J. Sci. Food Agric. 80, 936-966 (2000)

    Lai, S.M., H.L. Hsieh, and C.W. Chang, Preparative Separation of Oryzanol from Rice Bran Oil by Silica Gel Column Chromatography, J. Liq. Chromatogr. Relat. Technol., 28, 145-160 (2005)

    Sakai, T., T. Tanaka, K. Satou, Y. Morita, T. Hibi, Y. Tanabe, and S. Osawa,
    Cell Differentiation Promotor, Japanese Patent JP05310526A2 (1993)

    Seetharamaiah, G. S. and N. Chandrashekhar, Study on Hypocholesterolemic
    Activity, Artherosclerosis, 78, 219-226 (1989)

    Shay, E.G., Diesel Fuel from Vegetable Oils: Status and Opportunities,
    Biomass Bioenerg. 4, 227-242 (1993)

    Information Provided by Agriculture and Food Agency, COA, Executive
    Yuan, Taiwan, http://www.afa.gov.tw/aboutus.asp?CatID=6, accessed at
    April 4, 2004.

    Murayama,T., Evaluating Vegetable Oils as a Diesel Fuel, Inform, 5,
    1138-1145 (1994)

    Tokuda, Y., S. Yamagami, and O. Nakajima, Remedy For Dermatosis And
    Cosmetic Japanese Patent JP01290613A2 (1989)

    Ju,Y.H. and S.R. Vali, Rice Bran Oil as a Potential Resource for Biodiesel,
    J. Sci. Ind. Res. 64, 866-822 (2005)

    Xu, Z. and J.S. Godber, Purification and Identification of Compounds of
    -Oryzanol in Rice Bran Oil, J. Agric. Food Chem. 47, 2724-2728 (1999)

    Xu, Z. and J.S. Godber, Comparsion of Supercritical Fluid and Solvent
    Extraction Methods in Extracting -Oryzanol in Rice Bran, J. Am. Oil Chem. Soc., 77 (5), 547-551 (2000)

    QR CODE