簡易檢索 / 詳目顯示

研究生: 李炳輝
Ping-Hui Lee
論文名稱: 綠色無水泥混凝土鋼筋握裹性質之研究
Study on Bonding Behavior of Reinforcing Bar in Green No-cement Concrete
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 黃然
Ran Huang
徐輝明
Hui-Mi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 102
中文關鍵詞: 鋼筋握裹力動彈性模數鹼激發爐石混凝土SFC混凝土
外文關鍵詞: bonding behavior, dynamic Young’s modulus, alkaline-activated slag concrete, SFC concrete
相關次數: 點閱:300下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討鋼筋在鹼機發爐石粉(AAS)膠結材混凝土及SFC(由爐石粉(S)、F級飛灰(F)及循環式流化床燃燒飛灰(C)所組成)膠結材混凝土等兩種綠色無水泥混凝土之握裹應力性質,並以卜特蘭水泥(OPC)混凝土作為控制組作為比較依據,依照RILEM規範埋置鋼筋於150×150×150 mm3之混凝土方塊試體,鋼筋尺寸選用D13 mm (#4)鋼筋,埋設長度為65 mm(約五倍鋼筋直徑),各澆置三種不同低、中及高抗壓強度試體,探討抗壓強度、劈裂強度、彈性模數、超音波波速與鋼筋握裹力之關係。


This study aims to discuss the bonding stress properties of two green no-cement concretes, an alkali-activated slag (AAS) binder concrete and an innovative no-cement SFC binder concrete which was purely produced with the ternary mixture of three industrial by-products of ground granulated blast furnace slag (S), low calcium Class F fly ash (F) and circulating fluidized bed combustion (CFBC) fly ash (C). The ordinary Portland concrete was used as the control set for comparison. Based on RILEM standard, the rebars were embedded in a 150×150×150 mm3 cubic concrete specimens with the embedded length of 65 mm (about 5 times the diameter of rebars) where the size of rebars of D13 (#4) was chosen. Concrete specimens with three levels of low, medium and high compressive strength were cast. The relationship between the compressive strength, splitting tensile strength, elastic Young’s modulus, ultrasonic pulse velocity and the bonding stress of rebars was investigated for these concretes with similar compressive strengths as the base for comparison.

目錄 摘要 i 目錄 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1-1研究動機 1 1-2研究目的 2 1-3研究流程圖與內容 2 第二章 文獻回顧 4 2-1鋼筋握裹力 4 2-1-1握裹力相關規範 4 2-1-2握裹力學探討 5 2-1-3鋼筋受拉拔破壞模式 5 2-1-4 拉拔(pull-out)試驗 6 2-1-5 鋼筋握裹力與其他試驗之關係 7 2-2工業副產物介紹 8 2-2-1爐石 8 2-2-2 CFBC副產石灰 10 2-2-3飛灰 11 2-3 鹼激發爐石粉(AAS) 12 2-3-1鹼激發溶液 12 2-3-2 鹼激發反應機理 13 2-4 SFC混凝土 14 2-4-1 SFC混凝土反應機理 14 2-4-2 SFC相關探討 14 第三章 試驗計畫 33 3-1試驗內容 33 3-2試驗材料 34 3-3試驗儀器 35 3-4試驗配比 37 3-5試體編號 37 3-6試體拌合與製作 38 3-7試驗項目 38 3-7-1坍流度試驗 38 3-7-2 抗壓強度試驗 39 3-7-3劈裂強度試驗 39 3-7-4動彈性模數試驗 40 3-7-5超音波波速試驗 40 3-7-6鋼筋握裹力試驗 41 第四章 結果與討論 55 4-1 抗壓強度 55 4-2 動彈性模數 56 4-2-1動楊氏係數 56 4-2-2動剪力模數 56 4-2-3動彈性模數成長趨勢 57 4-3 劈裂強度探討 57 4-3-1 OPC混凝土 57 4-3-2 SFC混凝土 57 4-3-3 AAS混凝土 58 4-3-4劈裂強度比較 58 4-3-5破壞型態 59 4-4 坍流度試驗 59 4-5 超音波波速(UPV) 59 4-6 鋼筋握裹分析 60 4-6-1鋼筋握裹應力 60 4-6-2握裹分析-線性階段 61 4-6-3握裹分析-非線性階段 62 4-6-4握裹分析-下降階段 62 4-7 鋼筋綠混凝土運用評估 63 第五章 結論與建議 94 5-1結論 94 5-1建議 95 參考文獻 96

林育緯,「不同鹼激發劑對爐石飛灰無機聚合物工程性質之影響」,碩士,營建工程系,國立臺灣科技大學,台北市,2012.
陳子謙,「複合型無機聚合物砂漿之工程性質」,碩士,營建工程系,國立臺灣科技大學,台北市,2012.
陳冠宇,「鹼激發爐石基膠體配比因子對其工程性質影響之研究」,碩士,營建工程系,國立臺灣科技大學,台北市,2010.
黃兆龍,「卜作嵐混凝土使用手冊」,台北市,財團法人中興工程顧問社,2007.
楊仁佑,「低溫養護對爐石基無機聚合物工程性質之影響」,碩士,營建工程系,國立臺灣科技大學,台北市,2011.
鄭百榕,「爐石飛灰複合型無機聚合物於常溫及高溫環境之工程性質」, 碩士,營建工程系,國立臺灣科技大學,台北市, 2013.
Alkaysi, M, and S. El-Tawil, Factors affecting bond development between Ultra High Performance Concrete (UHPC) and steel bar reinforcement, Construction and Building Materials, 2017;144:412-422.
Al-Shannag, M.J, and A. Charif, Bond behavior of steel bars embedded in concretes made with natural lightweight aggregates, Journal of King Saud University-Engineering Sciences (Article In Press), 2017.
Ana,F.-J. M., P. Angel, and L.-H. Cecilio,Engineering Properties of Alkali-Activated Fly Ash Concrete, ACI Materials Journal, 2006;103:106-112.
Arezoumandi, M, M.H. Wolfe, and J.S. Volz, A comparative study of the bond strength of reinforcing steel in high-volume fly ash concrete and conventional concrete, Construction and Building Materials, 2013;40:919-924.
Arezoumandi, M, T.J. Looney, and J.S. Volz, Effect of fly ash replacement level on the bond strength of reinforcing steel in concrete beams, Journal of Cleaner Production, 2015;87:745-751.
Assaad,J.J,and C.A.Issa, Bond strength of epoxy-coated bars in underwater concrete, Construction and Building Materials, 2012;30:667-674.
Bakharev, T, J.G. Sanjayan, and Y.-B. Cheng, Alkali activation of Australian slag cements, Cement and Concrete Research,1999;29:113-120.
Castel, A, and S.J. Foster, Bond strength between blended slag and Class F fly ash geopolymer concrete with steel reinforcement, Cement and Concrete Research, 2015;72:48-53.
Chawlaa, R, Sumit Sharmab, Molecular dynamics simulation of carbon nanotube pull-out from polyethylene matrix, Composites Science and Technology, 2017;144:169-177.
Chen, C.-T, H.-A. Nguyen, T.-P. Chang, T.-R. Yang, and T.-D. Nguyen, Performance and microstructural examination on composition of hardened paste with no-cement SFC binder, Construction and Building Materials, 2015;76:264-272.
Choi ,E., B.-S. Cho, J.-S. Jeon, and S.-J. Yoon, Bond behavior of steel deformed bars embedded in concrete confined by FRP wire jackets, Construction and Building Materials, 2014;68:716-725.
Collins, F, and J.G. Sanjayan, Effect of pore size distribution on drying shrinking of alkali-activated slag concrete, Cement and Concrete Research, 2000;30:1401-1406.
Dakanali, I, I. Stavrakas, D. Triantis, and S. K. Kourkoulis, Pull-out of threaded reinforcing bars from marble blocks, Procedia Structural Integrity, 2016;2:2865-2872.
Damtoft, S., J. Lukasik, D. Herfort, D. Sorrentino, and E.M. Gartner, Sustainable development and climate change initiatives, Cement and Concrete Research, 2008;38:115-127.
Darwin, D, and A.B. Matamoros, Bond and Development of Straight Reinforcing Bars in Tension, ACI Committee 408 Report.
Duxson, P, and J.L. Provis, Designing precursors for geopolymer cements, Journal of the American Ceramic Society, 2008.
Glukhovsky, V.D, Alkali-earth binder and concrete produced with them, Kiev: Russian: Visheka shkola. 1979.
Haddad,R.H, and L.G. Shannis, Post-fire behavior of bond between high strength pozzolanic concrete and reinforcing steel, Construction and Building Materials, 2004;18:425-435.
Helincks, P, V. Boel, W. De Corte, G. De Schutter, and P. Desnerck, Structural behaviour of powder-type self-compacting concrete: Bond performance and shear capacity, Engineering Structures, 2013;48:121-132.
Hilti, A.G, Fastening Technology Manual: Hilti Asia Limited, 2000.
John ,M, R. Prince and B. Singh, Bond behaviour of deformed steel bars embedded in recycled 375 aggregate concrete, Construction and Building Materials, 2013;49:852-862.
Juenger ,M.C.G., F. Winnefeld, J.L. Provis, and J.H. Ideker, Advances in alternative cementitious binders, Cement and Concrete Research, 2011; 41:1232-1243.
Kanakubo, T, and H. Hosoya,Bond-Splitting Strength of Reinforced Strain-Hardening Cement Composite Elements with Small Bar Spacing, ACI Structural Journal, 2015;112-S17:189-198.
Khalaf, J, Z. Huang, and M. Fan, Analysis of bond-slip between concrete and steel bar in fire, Computers and Structures, 2016;162:1-15.
Kim, M. S., Jun, Y., Lee, C., & Oh, J. E, Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag, Cement and Concrete Research, 2013;54:208-214.
Kim, S.-W, and H.-D. Yun, Evaluation of the bond behavior of steel reinforcing bars in recycled fine aggregate concrete, Cement and Concrete Composites, 2014;46:8-18.
Looney, T.J, M. Arezoumandi, J.S. Volz, and J.J. Myers, An Experimental Study on Bond Strength of Reinforcing Steel in Self-Consolidating Concrete, International Journal of Concrete Structures and Materials, 2012;6:187-197.
Maranan, G, A. Manalo, K. Karunasena, and B. Benmokrane, Bond Stress-Slip Behavior: Case of GFRP Bars in Geopolymer Concrete, Journal of Materials in Civil Engineering, 2015;27(1).
Mousavi, S.S, M. Dehestani, and K.K. Mousavi, Bond strength and development length of steel bar in unconfined self-consolidating concrete, Engineering Structures, 2017;131:587-598.
Nguyen, H.-A, T.-P. Chang, J.-Y. Shih, C.-T. Chen, and T.-D. Nguyen, Influence of circulating fluidized bed combustion (CFBC) fly ash on properties of modified high volume low calcium fly ash (HVFA) cement paste, Construction and Building Materials, 2015;91:208-215.
Nguyen, H.-A, T.-P. Chang, J.-Y. Shih, C.-T. Chen, and T.-D. Nguyen, Sulfate resistance of low energy SFC no-cement mortar, Construction and Building Materials, 2016;102:239-243.
Nilson, A, Design of concrete structures, 1997.
Pacheco-Torgal, F., J. Castro-Gomes, and S. Jalali, "Alkali-activated binders, A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products, Construction and Building Materials, 2008,vol. 22, pp. 1305-1314.
Palacios, M, and F. Puertas, Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes, Cement and Concrete Research, 2007;37:691-702.
Phair, J.W, and J.S.J. van Deventer, Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers, International Journal of Mineral Processing, 2002;66:121-143.
Roy, C, D. Shi, and P. Krivenko, Alkali-activated cements and concretes, CRC press, 2006.
Roy, D.M, Alkali-activated cements Opportunities and challenges, Cement and Concrete Research,1999;29:249-254.
Sarker, P, Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete,Materials and Structures, 2011;44:1021-1030.
Schneider, M., M. Romer, M. Tschudin, and H. Bolio, Sustainable cement production—present and future, Cement and Concrete Research, 2011;41:642-650.
Shen, D, X. Shi, H. Zhang, X. Duan, and G. Jiang, Experimental study of early-age bond behavior between high strength concrete and steel bars using a pull-out test, Construction and Building Materials, 2016;113:653-663.
Sievert,T, A. Wolter, and N.B. Singh, Hydration of anhydrite of gypsum in a ball mill, Cement and Concrete Research, 2005;35:623-630.
Silva, P.D, K. Sagoe-Crenstil, and V. Sirivivatnanon, Kinetics of geopolymerization: Role of 〖Al〗_2 O_3 and 〖SiO〗_2, Cement and Concrete Research, 2007;37:512-518.
Singh, M., & Garg, M. Calcium,sulfate hemihydrate activated low heat sulfate resistant cement, Construction and Building Materials, 2002;16:181-186.
Sofi, M, J.S.J. van Deventer, P.A. Mendis and G.C. Lukey, Bond performance of reinforcing bars in inorganic polymer concrete (IPC), Journal of Materials Science, 2017;42:3107-3116.
Tastani, S.P, and S.J. Pantazopoulou, Experimental evaluation of the direct tension-pullout bond test, Bond in Concrete - from research to standards Conference, 2002.
Trezos, K.G, I.P. Sfikas, and K. Orfanopoulos, Bond of self-compacting concrete incorporating silica fume: Top-bar effect, effects of rebar distance from casting point and of rebar-to-concrete relative displacements during setting, Construction and Building Materials, 2014;73:378-390.
Wang, S.-D, K.L. Scrivener, and P.L.Pratt, Factors affecting the strength of alkali-activated slag,Cement and Concrete Research,1994;24:1033-1043.
Xu, H, J.S.J. van Deventer, and G.C. Lukey, Effect of Alkali Metals on the Preferential Geopolymerization of Stilbite/Kaolinite Mixtures, Industrial & Engineering Chemistry Research, 2001;40:3749-3756.
Yang, K.-H, J.-K. Song, and J.-S. Lee, Properties of alkali-activated mortar and concrete using lightweight aggregates, Materials and Structures, 2010;43:403-416.
Yang, S, Y. Chen, D. Du, and G. Fan, Determination of boundary effect on shear fracture energy at steel bar–concrete interface, Engineering Fracture Mechanics, 2016;153:319-330.
Yeih, W, R. Huang, J.J. Chang, and C.C. Yang, A Pullout Test for Determining Interface Properties between Rebar and Concrete, Advanced Cement Based Materials, 1997;5:57-65.
Zhang ,X., W. Dong, J.-J. Zheng, Z.-M. Wu, Y. Hu, and Q.-B. Li, Bond behavior of plain round bars embedded in concrete subjected to lateral tension, Construction and Building Materials, 2014;54:17-26.

QR CODE