簡易檢索 / 詳目顯示

研究生: 陳政傳
Cheng-Chuan Chen
論文名稱: 考慮遮陰效應之太陽能光電模擬器研發
Development of an Emulator for PV Module Considering Partial Shading Effects
指導教授: 張宏展
Hong-Chan Chang
口試委員: 陳建富
Jiann-Fuh Chen
陳財榮
Tsair-Rong Chen
吳瑞南
Ruay-Nan Wu
陳鴻誠
Hung-Cheng Chen
曹登發
Teng-Fa Tsao
郭政謙
Cheng-Chien Kuo
陳柏宏
Po-Hung Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 115
中文關鍵詞: 太陽能模組S-函數太陽能模組模擬裝置降壓式轉換器順向式轉換器直流微電網
外文關鍵詞: Photovoltaic Module, S-Function, Photovoltaic Emulator, Buck Converter, Forward Converter, DC Microgrid
相關次數: 點閱:1487下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發一套基於MATLAB/Simulink的太陽能模組軟體模型,此模型是以C語言編寫的S-函數自訂函式,以用於搭配Simulink所提供的模擬平台,進行太陽能發電系統的模擬,協助研究處理各種太陽能發電問題。太陽能模組軟體模型模擬之結果,與實際太陽能模組間之功率誤差最大約為1.1 W(4.4 %)。
    在架設太陽能相關研究實驗系統時,若採用太陽能模組當成電源,此時所需架構的周邊系統非常龐雜,成本較高,所以本研究同時開發一套以DSP和降壓式轉換器為核心,容量為300W/60V且具有部分遮陰效果之太陽能模組模擬器,供研究使用,以降低研究成本,有其實用價值。此模擬裝置的開發設計,是利用自行開發的太陽能模組軟體模型,參與模擬設計,同時驗證軟體模型的實用性。經由實作成品與實際太陽能模組之特性比對,其功率誤差最大約為1.6 W(6 %),確認了本裝置在太陽能發電相關研究中,確實可替代實際太陽能模組。
    本文嘗試針對兩個太陽能模組並聯且照度不均勻之情況進行建模,發現所建之模型在使用上有所限制。在研究解決方法時,發現了將分散式太陽能模組並聯至直流微電網這種新方案,避免了在太陽能模組這一級的並聯接線,用以解決因為部分模組被遮陰,而造成輸出功率減損之問題。因此嘗試將此太陽能軟體模型,應用在一個直流-直流順向式轉換器的模擬設計上,該轉換器是用以轉換分散式太陽能模組之電能至直流微電網,經模擬驗證,該轉換器之電壓調整率小於1 %,且於並上直流微電網後,確實可將太陽能模組之電能,傳送至電網上,除了確認本軟體模型在應用上的多樣性,同時也驗證了新方案之可行性。


    This research develops a software model for photovoltaic modules based on MATLAB/Simulink platform; this software model could simulate the photovoltaic power system and assist the researchers to handle various photovoltaic power issues. The maximum error between software model and a reference reality PV module in power is about 1.1 W (4.4 %).
    When using photovoltaic modules to setup research experiment system, the required peripheral systems is very complex, and high cost. Therefore, this study also develops a 300W/60V emulator considering partial shading effects which is an integration of buck converter, DSP, some detectors and rectifier. It could apply to much kind of photovoltaic researches in order to reduce research costs. The software model for photovoltaic modules which is developed in this research is applied to design and develop this emulator; by the way, the practicability of the software model is checked. The maximum error between emulator and a reference reality PV module in power is about 1.6 W (6 %). The emulator could replace reality PV module in some kinds of researches about solar power.
    This disseration attempts to build a model of two PV modules in parallel and uneven illumination. A restriction of the model has been found. When looking for a solution of the restriction, a proposal that the distributed PV modules connect with a DC microgrid in parallel is found. This approach avoids the parallel connection of PV modules. When some paralleled PV modules are shaded caused the output power derogation, this issue can be resolved by the approach. Therefore, the software model of photovoltaic modules is applied to a DC-DC forward converter’s design and the proposal’s verification. The software model of photovoltaic modules is combined with some models in SimPowerSystems to build the model of a basic element of a DC microgrid. The basic element includes a photovoltaic module and a forward converter. The output voltage regulation of the forward converter is less than 1 %, and the output power of a PV module is converted to the DC microgrid by checking the simulation results of the basic element’s model and the DC microgrid system model. On the same time, the software model of the photovoltaic module is multipurpose is verified.

    目  錄 中文摘要 I Abstract II 致  謝 IV 目  錄 V 符號索引 IX 圖 目 錄 XI 表 目 錄 XV 第一章 緒  論 1 1.1 研究背景與動機 1 1.2 文獻探討 3 1.3 研究限制與貢獻 7 1.4 章節概要 9 第二章 太陽能模組之模型建立 11 2.1 太陽能電池與模組之特性 11 2.1.1 太陽能電池之發電原理 11 2.1.2 太陽能電池的等效電路 15 2.1.3 太陽能陣列及保護二極體的組成 19 2.1.4 太陽能模組之特性曲線 26 2.1.5 太陽能模組部分遮陰之特性曲線分析 30 2.2 應用MATLAB/Simulink建構太陽能模組模型 36 2.2.1 MATLAB/Simulink介紹 36 2.2.2 應用S-函數建構太陽能模組之模型 38 2.2.3 兩個太陽能模組串聯且照度不均勻之模型建構 42 2.2.4 兩個太陽能模組並聯且照度不均勻之模型建構 47 2.3 太陽能模組軟體模型與實體之比對驗證 51 2.4 本章結論 53 第三章 太陽能模組模擬裝置之模擬設計 54 3.1 前言 54 3.2 設計條件與模擬設定 54 3.3 降壓式直流-直流轉換電路原理分析 56 3.4 降壓式轉換電路之模擬設定 60 3.5 太陽能模組模擬裝置之軟體模擬系統建構 62 3.5.1 太陽能模組模擬裝置均勻照度下之模型建構 63 3.5.2 兩模組串聯且照度不均勻之太陽能模組模擬裝置建模 73 3.5.3 兩模組並聯且照度不均勻之太陽能模組模擬裝置建模 75 3.6 本章結論 76 第四章 太陽能模組模擬裝置之實作驗證 78 4.1 前言 78 4.2 系統硬體電路架構 78 4.3 降壓式轉換器元件及週邊電路設計 79 4.3.1 功率電晶體元件選擇 79 4.3.2 飛輪二極體選擇 80 4.3.3 功率電晶體閘極驅動電路 80 4.3.4 功率電晶體緩衝電路 81 4.4 回授電路 83 4.4.1 電壓回授電路 83 4.4.2 電流回授電路 83 4.5 數位訊號處理器之控制軟體規劃 83 4.6 實作案例驗證 86 4.6.1 實體太陽能模組與單一模組模式之特性曲線比較 87 4.6.2 不同日照量下兩個模組串聯與並聯模式實測特性曲線 88 4.7 本章結論 92 第五章 應用於太陽能模組之順向式轉換器設計與模擬驗證 93 5.1 前言 93 5.2 順向式轉換器架構 94 5.3 模擬設計案例 95 5.3.1 順向式轉換器之模型 95 5.3.2 太陽能模組軟體模型之修訂 96 5.3.3 直流微電網基礎單元模擬之建構 96 5.3.4 模擬結果與分析 98 5.4 分散式太陽能模組並聯上直流微電網之模擬 100 5.4.1 太陽能模組軟體模型之修改 100 5.4.2 順向式轉換器之模型修改 101 5.4.3 負載阻抗之模型修改 101 5.4.4 分散式太陽能模組並聯上直流微電網之模型建構 102 5.4.5 分散式太陽能模組並聯上直流微電網模擬結果與分析 102 5.5 本章結論 105 第六章 結論與未來展望 107 6.1 結論 107 6.2 未來展望 108 參考文獻 110 作者簡介 116

    [1] 2014年能源產業技術白皮書,經濟部能源局,2014年5月。
    [2] 台灣電力公司永續報告書2015,台灣電力公司,2015年8月。
    Available: http://www.taipower.com.tw/
    [3] 樊晉源、林品華、張書豪、洪文琪、陳曉郁,「太陽能電池產業技術與標準初探」,財團法人國家實驗研究院科技政策研究與資訊中心, 2015年5月。
    [4] Amory B. Lovins, Reinventing Fire: Bold Business Solutions for the New Energy Era, Chelsea Green Publishing Company, Vermont, USA, 2011, ISBN 978-1-60358-371-8.
    [5] 陳家宏,「具穩壓控制之太陽能陣列最大功率儲能系統」, 淡江大學電機工程學系博士論文, 2006年1月。
    [6] K. Bandara, T. Sweet, and J. Ekanayake, “Photovoltaic applications for off-grid electrification using novel multi-level inverter technology with energy storage,” Renewable Energy, Vol. 37, No. 1, pp. 82-88, Jan. 2012.
    [7] I. Patrao, E. Figueres, F. González-Espín, and G. Garcerá “Transformerless topologies for grid-connected single-phase photovoltaic inverters,” Renewable and Sustainable Energy Reviews, Vol. 15, No. 7, pp. 3423-3413, Sep. 2011.
    [8] F.-S. Kang, S.-J. Park, S.E. Cho, and J.-M.Kim, “Photovoltaic power interface circuit incorporated with a buck-boost converter and a full-bridge inverter,” Applied Energy, Vol. 82, No. 3, pp. 266-283, Nov. 2005.
    [9] T.P. Corrêa, S.I. Seleme Jr, and S.R. Silva, “Efficiency optimization in stand-alone photovoltaic pumping system,” Renewable Energy, Vol. 41, pp. 220-226, May 2012.
    [10] S. Avril, G. Arnaud, A. Florentin, and M. Vinard, “Multi-objective optimization of batteries and hydrogen storage technologies for remote photovoltaic systems,” Energy, Vol. 35, No. 12, pp. 5300-5308, Dec. 2011.
    [11] R.K. Rajkumar, V.K. Ramachandaramurthy, B.L. Yong, and D.B. Chia, “Techno-economical optimization of hybrid PV/wind/battery system using Neuro-Fuzzy,” Energy, Vol. 36, No. 8, pp. 5148-5153, Aug. 2011.
    [12] H. Cherif and J. Belhadj, “Large-scale time evaluation for energy estimation of stand-alone hybrid photovoltaic–wind system feeding a reverse osmosis desalination unit,” Energy, Vol. 36, No. 10, pp. 6058-6067, Oct. 2011.
    [13] E. Cetin, A. Yilanci, H.K. Ozturk, M. Colak, I. Kasikci, and S. Iplikci, “A micro-DC power distribution system for a residential application energized by photovoltaic–wind/fuel cell hybrid energy systems,” Energy and Buildings, Vol. 42, No. 8, pp. 1344-1352, Aug. 2010.
    [14] M. Dali, J. Belhadj, and X. Roboam, “Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: Control and energy management – Experimental investigation,” Energy, Vol. 35, No. 6, pp. 2587-2595, June 2010.
    [15] C. Clastres, T.T. Ha Pham, F. Wurtz, and S. Bacha, “Ancillary services and optimal household energy management with photovoltaic production,” Energy, Vol. 35, No. 1, pp. 55-64, Jan. 2010.
    [16] D. Lu, H. Fakham, T. Zhou, and B. François, “Application of Petri nets for the energy management of a photovoltaic based power station including storage units,” Renewable Energy, Vol. 35, No. 6, pp. 1117-1124, June 2010.
    [17] Chiung-Chou Liao, “Genetic k-means algorithm based RBF network for photovoltaic MPP prediction,” Energy, Vol. 35, No. 2, pp. 529-536, Feb. 2010.
    [18] I.H. Altas and A.M. Sharaf, “A novel maximum power fuzzy logic controller for photovoltaic solar energy systems,” Renewable Energy, Vol. 33, No. 3, pp. 388-399, Mar. 2008.
    [19] A. Garrigós, J.M. Blanes, J.A. Carrasco, and J.B. Ejea, “Real time estimation of photovoltaic modules characteristics and its application to maximum power point operation,” Renewable Energy, Vol. 32, No. 6, pp. 1059-1076, May 2007.
    [20] Younghyun Kim, Woojoo Lee, Massoud Pedram, and Naehyuck Changa, “Dual-mode power regulator for photovoltaic module emulation,” Applied Energy, Vol. 101, pp. 730-739, Jan. 2013.
    [21] D.D.C. Lu and Q.N. Nguyen, “A photovoltaic panel emulator using a buck-boost DC/DC converter and a low cost micro-controller,” Solar Energy, Vol. 86, No. 5, pp. 1477-1484, 2012.
    [22] A. Vijayakumari, A.T. Devarajan, and N. Devarajan, “Design and development of a model-based hardware simulator for photovoltaic array,” International Journal of Electrical Power & Energy Systems, Vol. 43, No. 1, pp. 40-46, June 2012.
    [23] Lina M. Barrera, Ricardo A. Osorio, and César L. Trujillo, “Design and implementation of electronic equipment that emulates photovoltaic panels,” in Proceedings of Photovoltaic Specialist Conference (PVSC), 20 15 IEEE 42nd, pp. 1-5, New Orleans, LA., U.S.A. June 14-19, 2015.
    [24] Shlomo Gadelovits, Moshe Sitbon and, Alon Kuperman, “Rapid prototyping of a low-cost solar array simulator using an off-the-Shelf DC power supply,” IEEE Transactions on Power Electronics, Vol. 29, No. 10, pp. 5278 – 5284, Oct. 2014.
    [25] R. Kadri, H. Andrei, J.-P. Gaubert, T. Ivanovici, G. Champenois, and P. Andrei, “Modeling of the photovoltaic cell circuit parameters for optimum connection model and real-time emulator with partial shadow conditions,” Energy, Vol. 41, No. 1, pp. 57-67, Jan. 2012.
    [26] M. C. Di Piazza and G. Vitale, “Photovoltaic field emulation including dynamic and partial shadow conditions,” Applied Energy, Vol. 87, No. 3, pp. 814-823, 2010.
    [27] 王耀諄、邱國偉,“太陽能電池EMTP模型之建立”,電力電子技術雙月刊第65期,pp. 32-43,2001年8月。
    [28] H. Patel and V. Agarwal, “MATLAB-based modeling to study the effects of partial shading on PV array characteristics,” IEEE Transaction on Energy Conversion, Vol. 23, No 1, pp. 302 - 310, 2008.
    [29] Magdi M. El-Saadawi, Ahmed E. Hassan, Khaled M. Abo-Al-Ez and, Mahmoud S. Kandil, “A proposed dynamic model of photovoltaic-DG system,” Proceedings of the 1st International Nuclear and Renewable Energy Conference (INREC10), pp. 1-6, Amman, Jordan, March 21-24, 2010.
    [30] Ahmed Sony Kamal Chowdhury, K. M. A. Salam, and M. Abdur Razzak, “Modeling of MATLAB-Simulink based photovoltaic module using flyback converter,” in Proceedings of 2014 9th International Forum on Strategic Technology (IFOST), Cox's Bazar, Bangladesh, pp. 378 - 381, Oct. 21-23, 2014.
    [31] Vanjari Venkata Ramana and Debashisha Jena, “An accurate modeling of photovoltaic system for uniform and non-uniform irradiance,” INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH, Vol.5, No.1, pp. 29-40, 2015.
    [32] 莊嘉琛 編譯,太陽能工程-太陽能電池,全華科技圖書股份有限公司, 台北市, 1997年8月。
    [33] 薛定宇、陳陽泉,基于MATLAB/Simulink的系統仿真技術與應用,清華大學出版社,第2版,北京,中國,2011年2月。
    [34] 張宏展,余浩平,黃李堅,陳政傳,「基於雲端架構之太陽能電廠監測暨故障診斷系統研製」,中華民國第三十四屆電力工程研討會,台中市,台灣,第2439~2444頁,2013年12月6-7日。
    [35] Shih-Ming Chen, Tsorng-Juu Liang, and Ke-Ren Hu, “Design, analysis, and implementation of solar power optimizer for DC distribution system,” IEEE Transactions on Power Electronics, Vol. 28, No. 4, pp. 1764-1772, Apr. 2013.
    [36] S. Dobbala and K. C. Mouli, “Analysis of solar power optimizer for DC distribution generation system,” International Journal of Science and Research (IJSR), Vol. 3 No. 11, pp. 2938-2943, Nov. 2014.
    [37] 安毓英、曾小東,光學感測與測量,五南圖書出版公司,第1版,台北,台灣,2004年3月。
    [38] 蔡進譯,“超高效率太陽電池-從愛因斯坦的光電效應談起”,物理雙月刊,廿七卷五期,第701-719頁,2005年10月。
    [39] F. Lasnier and T. G. Ang, Photovoltaic Engineering Handbook, New York, A. Hilger, 1990.
    [40] Gilbert M. Masters, Renewable and Efficient Electric Power Systems, John Wiley & Sons, Inc., 2nd ed., Hoboken, New Jersey, U.S.A., June, 2013, ISBN: 978-1-118-14062-8.
    [41] IEC 60904-1 ,“Photovoltaic devices - Part 1: Measurement of photovoltaic current-voltage characteristics,” 2nd ed., 2006.
    [42] Duane Hanselman and Bruce Littlefield, The student edition of MATLAB : version 5, user’s guide/ The Math Works, Inc., Prentice-Hall, Inc., 1997
    [43] Saure T., Numerical Analysis, 1st ed., New Jersey, Pearson/Addison- Wesley, 2006.
    [44] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics: converters, applications and design, 2nd ed., John Wiley & Sons Inc., 1995.
    [45] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, 7th ed. Pearson Education, 2015.

    QR CODE