簡易檢索 / 詳目顯示

研究生: 江芃誼
Peng-Yi Jiang
論文名稱: 探討微氣泡超音波應用於聽覺細胞增強基因敲落之效用及安全性
Investigating the effectiveness and safety of ultrasound-microbubble for gene knockdown enhancement in auditory cells
指導教授: 廖愛禾
Ai-ho Liao
口試委員: 王智弘
Zhi-Hong Wang
施政坪
Zheng-Ping Shi
沈哲州
Zhe-Zhou Shen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 基因敲落溶菌酶微氣泡對比劑超音波轉染效率穴蝕效應
外文關鍵詞: gene knockdown, Lysozyme microbubble, ultrasound, transfection efficiency, cavitation
相關次數: 點閱:290下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於內耳特殊之結構及位置,如何有效地將藥物等輸送至內耳為一大考驗。在內耳的醫學領域中,噪音性聽損為常見的聽力相關病症,且有相當高比例之患者接受化療藥物治療後,產生耳毒性等副作用;耳毒性和耳蝸內氧化壓力有關,活性氧物質會破壞DNA及蛋白質,從而導致細胞損傷、壞死和凋亡等不可逆傷害。siRNA為新興醫學療法,其應用於基因敲落為相當重要之技術,在不同的醫學領域中針對標靶基因給予細胞治療甚至再生之效用。本研究探討siRNA吸附溶菌酶微氣泡併超音波介導技術,延伸於內耳領域基因治療,以獲得安全且有效之基因敲落,嘗試發展出內耳之創新療法。
    以正負電荷吸附之LyzMBs-siRNA透過動態光散射儀測量粒徑與電位,並進行細胞轉染實驗 (n=5),其實驗組別分別為 (1) Control (no treatment)、(2) 單純siRNA溶液 (siRNA) 、(3) 施打超音波能量於siRNA溶液 (US+siRNA)、(4) siRNA溶液混合溶菌酶微氣泡 (LyzMBs+siRNA)、(5) 施打超音波能量於溶菌酶微氣泡混合siRNA溶液 (US+LyzMBs+siRNA)、(6) 吸附siRNA之溶菌酶微氣泡 (LyzMBs-siRNA)、(7) 施打超音波能量於吸附siRNA之溶菌酶微氣泡 (US+ LyzMBs-siRNA)。
    根據實驗結果,單純溶菌酶微氣泡與吸附siRNA Cy3之溶菌酶微氣泡粒徑大小依序為 2.6 ± 0.08 µm、4.0 ± 0.49 µm;表面電位依序為 54.4 ± 2.70 mV、47.1 ± 1.27 mV;溶菌酶微氣泡吸附siRNA Cy3之吸附率為 65%;在體外試驗中,吸附款之溶菌酶微氣泡施打超音波後轉染效率提升至 48.18%。siRNA由於本身微負電結構,難以穿過帶負電之細胞膜,藉由吸附溶菌酶微氣泡結合超音波介導技術,溶菌酶微氣泡作為藥物載體,施打超音波造成微氣泡穴蝕效應,開啟細胞膜通透度,成功的將siRNA送入細胞、提高轉染效率並保護siRNA免受血清等降解。本研究將以超音波結合微氣泡對比劑之技術,探討溶菌酶微氣泡作為基因載體於內耳細胞進行基因敲落之可行性。


    Since the special structure and position of the inner ear, how to effectively deliver drugs into the inner ear is a big challenge. Noise-induced hearing loss is a common hearing-related disorder, and there is a high percentage of patients receiving chemotherapy drugs have side effects such as ototoxicity. Ototoxicity is associated with increased cochlear oxidative stress. These reactive oxygen species can damage DNA and proteins, leading to irreversible damage such as cell damage, necrosis, and apoptosis. siRNA transfection is a new therapeutic method, and its application in gene knockdown is a very important technology. In different medical research fields, siRNA for specific target genes can provide therapeutic and even cell regeneration effects. This thesis aims to explore newly synthesized siRNA-coated lysozyme microbubble complexes with ultrasound-mediation, which extends gene therapy in the inner ear to obtain a safer and more effective method of gene knockdown, and try to develop innovative therapies for the inner ear.
    The size distribution and Zeta potential of the siRNA-shelled LyzMBs in suspension were measured by DLS respectively. The in vitro (n=5) experimental parameters will be divided into seven groups: (1) no treatment (Control), (2) siRNA solution (siRNA) alone, (3) US combines with siRNA solution (US+siRNA), (4) siRNA solution mixed with LyzMBs (LyzMBs+siRNA), (5) US combined with LyzMBs and penetrating siRNA (US+LyzMBs+siRNA), (6) siRNA-shelled LyzMBs (LyzMBs-siRNA) alone; (7) US combined with LyzMBs-siRNA (US+LyzMBs-siRNA).
    According to the results, siRNA grafted with LyzMBs (mean diameter of 2.6 ± 0.08 µm) were synthesized into complexes of LyzMBs-siRNA that had mean diameters of 4.0 ± 0.49 µm. The Zeta potentials of LyzMBs and LyzMBs-siRNA were 54.4 ± 2.70 mV and 47.1 ± 1.27 mV, respectively. The adsorption efficiency of siRNA Cy3 on cationic LyzMBs was 65%. In the in vitro study, US+LyzMBs-siRNA had the best transfection efficiency of 48.18 %. Positive charged polyplexes facilitate the cellular uptake by interaction with negative charged cell membrane. Ultrasonic application can cause microbubbles cavitation effect, enhance cell membrane permeability, deliver siRNA into cells, improve transfection efficiency and protect siRNA from degradation by serum. This study will investigate the role and safety of ultrasound-microbubble in the application of cochlear gene knockdown to explore the feasibility of lysozyme microbubbles as gene carriers in the inner ear.

    中文摘要 1 ABSTRACT 2 致謝 4 圖目錄 9 表目錄 11 第1章、緒論 12 1.1 內耳治療 12 1.1.1 內耳基因治療簡介 (Gene therapy) 12 1.1.2 基因轉殖 (Gene transfection) 13 1.2 超音波傳輸機制 15 1.2.1 超音波簡介 (Ultrasound) 15 1.2.2 醫用超音波 (medical ultrasound) 15 1.2.3 超音波結合微氣泡於基因治療之應用 16 1.3 超音波微氣泡對比劑 17 1.3.1 穴蝕效應 (Cavitation) 19 1.3.2 穩態穴蝕效應 (Stable cavitation) 20 1.3.3 慣性穴蝕效應 (Inertial cavitation) 20 1.4 溶菌酶簡介及應用 22 1.4.1 溶菌酶 (Lysozyme) 22 1.4.2 溶菌酶微氣泡相關研究 24 1.5 siRNA簡介及應用 24 1.5.1 siRNA 24 1.5.2 基因敲落 (gene knockdown) 25 1.5.3 細胞轉染 (cell transfection) 26 1.6 研究動機 28 第2章、材料與方法 29 2.1 研究架構 29 2.2 藥品與設備 30 2.2.1 藥品 30 2.2.2 設備 31 2.3 溶菌酶微氣泡製備 32 2.3.1 表面吸附 siRNA 之溶菌酶微氣泡製備 33 2.4 溶菌酶微氣泡與吸附 siRNA 溶菌酶微氣泡之性質分析 34 2.4.1 粒徑分析 34 2.4.2 電位分析 35 2.4.3 濃度量測 35 2.4.4 高解析度場發射掃描式電子顯微鏡拍攝 36 2.4.5 siRNA 與溶菌酶微氣泡之吸附效率評估 36 2.5 溶菌酶微氣泡對比劑影像系統分析 37 2.5.1 基因轉殖超音波導入系統 38 2.6 體外細胞實驗 39 2.6.1 細胞株及細胞繼代 39 2.6.2 細胞計數 40 2.6.3 凍細胞及解凍細胞 41 2.6.4 載玻片細胞染核 42 2.6.5 細胞生存率分析 43 2.6.6 細胞實驗組別設計 44 2.6.7 細胞實驗方法 45 2.7 反轉錄聚合酶連鎖反應 RT-PCR 46 2.7.1 RNA extraction 47 2.7.2 反轉錄 (Reverse Transcription) 48 2.7.3 定量PCR (qPCR) 48 2.7.4 siRNA 和引子 (primer) 序列 50 2.8 統計分析 50 第3章、實驗結果 51 3.1 溶菌酶微氣泡與吸附 siRNA 之溶菌酶微氣泡性質分析 51 3.1.1 粒徑分析 51 3.1.2 電位分析 52 3.1.3 濃度分析 53 3.1.4 場發射掃描式電子顯微鏡檢 54 3.1.5 無菌溶菌酶微氣泡製備 55 3.1.6 溶菌酶微氣泡吸附效率之評估 55 3.2 高頻超音波影像系統之超音波能量打破效率參數分析 57 3.2.1 24-well 之模擬體外細胞試驗 57 3.3 體外細胞轉染試驗 59 3.3.1 體外試驗之不同微氣泡稀釋倍率於細胞之影響 59 3.3.2 轉染效率檢測 60 3.3.3 細胞生存率分析 62 3.4 反轉錄聚合酶連鎖反應RT-PCR 64 第4章、討論 67 第5章、結論 71 參考文獻 72

    [1] Yong Wang and Keiko Hirose, “Dynamics of noise-induced cellular injury and repair in the mouse cochlea”, J Assoc Res Otolaryngol, 2002 Sep;3(3):248-68.
    [2] A Forge and J Schacht et al., “Aminoglycoside antibiotics”, Audiol Neurootol, Jan-Feb 2000;5(1):3-22.
    [3] G M Clark, “A surgical approach for a cochlear implant: an anatomical study”, J Laryngol Otol, 1975 Jan;89(1):9-15.
    [4] Agnete Parving, “The hearing aid revolution: fact or fiction?”, Acta Otolaryngol, 2003 Jan;123(2):245-8.
    [5] Seth M Cohen and Robert F Labadie et al., “Quality of life in hearing-impaired adults: the role of cochlear implants and hearing aids”, Otolaryngol Head Neck Surg, 2004 Oct;131(4):413-22.
    [6] Alain S Uziel and Martine Sillon et al., “Ten-year follow-up of a consecutive series of children with multichannel cochlear implants”, Otol Neurotol, 2007 Aug;28(5):615-28.
    [7] Douglas A. Cotanche, “Genetic and pharmacological intervention for treatment/ prevention of hearing loss”, J Commun Disord, 2008 Sep–Oct; 41(5): 421–443.
    [8] Gwenaëlle S.G. Géléoc and Jeffrey R. Holt, “Sound Strategies for Hearing Restoration”, Science, 2014 May 9; 344(6184): 1241062.
    [9] Chardin S and Romand R, “Regeneration and mammalian auditory hair cells”, Science, 1995;267:707-11.
    [10] Carol J. MacArthur and De-Ann M. Pillers, “Altered Expression of Middle and Inner Ear Cytokines in Mouse Otitis Media”, Laryngoscope, 2011 Feb;121(2): 365–371.
    [11] Yang Chen and Wei-Guo Huang et al., “Aspirin attenuates gentamicin ototoxicity: from the laboratory to the clinic”, Hear Res, 2007 Apr;226(1-2):178-82.
    [12] N. A Bermingham and B. A Hassan et al., “Math1: an essential gene for the generation of inner ear hair cells”, Science, 126(8), 1999 Jun 11;284(5421):1837-41.
    [13] J W Gordon and F H Ruddle, “Germ line transmission in transgenic mice”, Prog Clin Biol Res, 1982;85 Pt B:111-24.
    [14] Mark A. Parker, “Biotechnology in the Treatment of Sensorineural Hearing Loss: Foundations and Future of Hair Cell Regeneration”, J Speech Lang Hear Res, 2011 Dec; 54(6): 1709–1731.
    [15] Alan L Parker, “Nonviral Gene Delivery: Techniques and Implications for Molecular Medicine”, Expert Reviews in Molecular Medicine, 2003 Oct; 5(22):1-15.
    [16] Shiying Wang, “Targeting of microbubbles - contrast agents for ultrasound molecular imaging”, J Drug Target, 2018 Jun-Jul; 26(5-6): 420–434.
    [17] Tzu-Yin Wang and Katheryne E. Wilsonet, “Ultrasound and Microbubble Guided Drug Delivery: Mechanistic Understanding and Clinical Implications”, Curr Pharm Biotechnol, 2014 Oct; 14(8): 743–752.
    [18] Oleg A. Sapozhnikova, “Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields”, J Acoust Soc Am, 2015 Sep; 138(3): 1515–1532.
    [19] Anup Shah, Neil R. Owen, “Novel ultrasound method to reposition kidney stones”, Urol Res, 2010 Dec; 38(6): 491–495.
    [20] Jeff Powers, “Medical ultrasound systems”, Interface Focus, 2011 Aug 6; 1(4): 477–489.
    [21] T Suzuki and B C Shin et al., “Direct gene transfer into rat liver cells by in vivo electroporation”, FEBS Lett, 1998 Apr 3;425(3):436-40.
    [22] R Vanbever and V Préat V, “In vivo efficacy and safety of skin electroporation”, Adv Drug Deliv Rev, 1999 Jan 4;35(1):77-88.
    [23] M Bettan and M A Ivanov et al., “Efficient DNA electrotransfer into tumors”, Bioelectrochemistry, 2000 Sep;52(1):83-90.
    [24] Xiaofan Du and Jing Wang et al., “Advanced physical techniques for gene delivery based on membrane perforation”, Drug Deliv, 2018; 25(1): 1516–1525.
    [25] Anthony Delalande and Spiros Kotopoulis et al., “Sonoporation: mechanistic insights and ongoing challenges for gene transfer”, Gene, 2013 Aug 10;525(2):191-9.
    [26] Anshuman Dasgupta and Mengjiao Liu, “Ultrasound-mediated drug delivery to the brain: principles, progress and prospects”, Drug Discov Today Technol, 2016 Jun;20:41-48.
    [27] Unger EC and Hersh E et al., “Gene delivery using ultrasound contrast agents”, Echocardiography, 2001;18:355–61.
    [28] Unger EC and McCreery TP et al., “Acoustically active lipospheres containing paclitaxel—a new therapeutic ultrasound contrast agent”, Investig Radiol, 1998;33:886–92.
    [29] Phillips LC and Klibanov AL et al., “Localized ultrasound enhances delivery of rapamycin from microbubbles to prevent smooth muscle proliferation”, J Control Release, 2011;154: 42-9.
    [30] Joshua Owen and Calum Crake, “A versatile method for the preparation of particle-loaded microbubbles for multimodality imaging and targeted drug delivery”, Drug Deliv. and Transl. Res, 2018;8:342–356.
    [31] Andrew R Carson and Charles F McTiernan et al., “Ultrasound-Targeted Microbubble Destruction to Deliver siRNA Cancer Therapy”, Cancer Res, 72(23): 6191–6199.
    [32] Jonathan A. Kopechek and Andrew R. Carson et al., “Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound”, PLoS ONE, 11(7): e0159751.
    [33] Kim YS and Rhim H et al., “High-intensity focused ultrasound therapy: an overview for radiologists”, Korean journal of radiology : official journal of the Korean Radiological Society, 2008;9:291-302.
    [34] S. Tinkov and R. Bekeredjian et al., “fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites”, Journal of Pharmaceutical Sciences, 98, 6, 1935-61, 2009.
    [35] G. Decher, “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites”, Science, 277, 5330, 1232-1237, 1997.
    [36] Shashank Sirsi and Mark Borden, “Microbubble Compositions, Properties and Biomedical Applications”, Bubble Sci Eng Technol, 2009 Nov; 1(1-2): 3–17.
    [37] Sofie Snipstad, “Ultrasound Improves the Delivery and Therapeutic Effect of Nanoparticle-Stabilized Microbubbles in Breast Cancer Xenografts” Ultrasound Med Biol, 2017 Nov;43(11):2651-2669.
    [38] Heleen Dewitte, “Theranostic mRNA-loaded Microbubbles in the Lymphatics of Dogs: Implications for Drug Delivery”, Theranostics, 2015; 5(1): 97–109.
    [39] Conor McEwan and Sukanta Kamila et al., “Combined sonodynamic and antimetabolite therapy for the improved treatment of pancreatic cancer using oxygen loaded microbubbles as a delivery vehicle”, Biomaterials, 2016 Feb;80:20-32.
    [40] Jing Luo and Zhipan Niu et al., “Jet and Shock Wave from Collapse of Two Cavitation Bubbles”, Sci Rep, 2019; 9: 1352.
    [41] M T Burgess and I Apostolakis et al., “Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles”, Phys Med Biol, 2018 Mar 15; 63(6): 065009.
    [42] I. Lentacker and S.C. De Smedt et al., “Drug loaded microbubble design for ultrasound triggered delivery”, The Royal Society of Chemistry, 5, 2161-2170, 2009.
    [43] Sayan Mullick Chowdhury, “Ultrasound-guided drug delivery in cancer”, Ultrasonography, 2017; 36(3): 171-184.
    [44] Cécile Fant and Maxime Lafond, “In vitro potentiation of doxorubicin by unseeded controlled non-inertial ultrasound cavitation”, Sci Rep, 2019; 9: 15581.
    [45] A.Prosperetti, “Bubble phenomena in sould fields: part two”, Ultrasonics, May 1984, Pages 115-124.
    [46] R Pecha and B Gompf, “Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale”, Phys Rev Lett, 2000 Feb 7;84(6):1328-30.
    [47] Kyle T. Rich, “Relations between acoustic cavitation and skin resistance during intermediate- and high-frequency sonophoresis”, J Control Release, 2014 Nov 28; 194: 266–277.
    [48] GiovannaPeruzzia and GiorgiaSinibaldi et al., “Perspectives on cavitation enhanced endothelial layer permeability”, Colloids and Surfaces B: Biointerfaces, August 2018, Pages 83-93.
    [49] Williams S and Vocadlo D et al., “Glycoside hydrolase family 22”, Cazypedia, 11-Apr-17.
    [50] C.Y. Ting and CH. Fan et al., “Concurrent bloodebrain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment”, Biomaterials, 33, 704-712, 2012.
    [51] R.C.Davies and A.Neuberger et al., “The dependence of lysozyme activity on pH and ionic strength”,Biochimica et Biophysica Acta (BBA) - Enzymology, 22 April 1969, Pages 294-305.
    [52] Stephanie A. Ragland and Alison K. Criss et al., “From bacterial killing to immune modulation: Recent insights into the functions of lysozyme”, PLoS Pathog, 2017 Sep; 13(9): e1006512.
    [53] Ewa Gajda and Gabriela Bugla-Płoskońska, “Lysozyme--occurrence in nature, biological properties and possible applications”, Postepy Hig Med Dosw, 2014 Dec 21;68:1501-15.
    [54] Sarra Sebaa and Nicolas Hizette et al., “Dose-dependent effect of lysozyme upon Candida albicans biofilm”, Mol Med Rep, 2017 Mar; 15(3): 1135–1142.
    [55] Jun Shimada and Sung K Moon, “Lysozyme M deficiency leads to an increased susceptibility to Streptococcus pneumoniae-induced otitis media”, BMC Infect Dis, 2008; 8: 134.
    [56] Shanghao Li and Jerome J. Mulloor et al., “Strong and Selective Adsorption of Lysozyme on Graphene Oxide”, ACS Appl Mater Interfaces, 2014 Apr 23; 6(8): 5704–5712.
    [57] “Proteins : The amino acid sequence of hen egg white lysozyme”, The open university, Online Available: https://www.open.edu/openlearn/science-maths-technology/science/biology/proteins/content-section-6.3
    [58] Francesca Cavalieri and Laura Micheli et al., “Antimicrobial and biosensing ultrasound-responsive lysozyme-shelled microbubbles”, ACS Appl Mater Interfaces, 2013 Jan 23;5(2):464-71.
    [59] Lillian Lee and Francesca Cavalieri et al., “Exploring New Applications of Lysozyme-Shelled Microbubbles”, Langmuir, 2019, 35, 31, 9997–10006.
    [60] Francesca Cavalieri and Marisa Colone et al., “Influence of the Morphology of Lysozyme‐Shelled Microparticles on the Cellular Association, Uptake, and Degradation in Human Breast Adenocarcinoma Cells”, Particle-journal , 24-Apr-13.
    [61] S. Melino and M. Zhou et al., “Molecular properties of lysozyme-microbubbles: towards the protein and nucleic acid delivery”, Amino Acids, 43, 885-896, 2012.
    [62] Liliana Mendonça, “Targeted lipid-based systems for siRNA delivery”, Journal of Drug Delivery Science and Technology , 22(1):65-73.
    [63] Hickerson, Robyn P. and Smith, Frances J. D et al., “Single-Nucleotide-Specific siRNA Targeting in a Dominant-Negative Skin Model”, Journal of Investigative Dermatology, 128 (3): 594–605.
    [64] Hamilton AJ and Baulcombe DC, “ A species of small antisense RNA in posttranscriptional gene silencing in plants”, Science, 286 (5441): 950–2.
    [65] Shen H and Sun T et al., “ Nanovector delivery of siRNA for cancer therapy”, Cancer Gene Therapy, 2012, 19 (6): 367–73.
    [66] Anders Wittrup and Angela Ai, “Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown”, Nat Biotechnol, 2015 Aug; 33(8): 870–876.
    [67] Anders Wittrup and Judy Lieberman, “Knocking down disease: a progress report on siRNA therapeutics”, Nature Reviews Geneticss, 16, pages 543–552(2015).
    [68] Tae Kyung Kim and James H. Eberwine et al., “Mammalian cell transfection: the present and the future”, Anal Bioanal Chem, 2010 Aug; 397(8): 3173–3178.
    [69] Sangpil Yoon and Pengzhi Wang, “Acoustic-transfection for genomic manipulation of single-cells using high frequency ultrasound”, Sci Rep, 2017; 7: 5275.
    [70] John A. Zuris and David B. Thompson et al., “Efficient Delivery of Genome-Editing Proteins In Vitro and In Vivo”, Nat Biotechnol, 2015 Jan; 33(1): 73–80.
    [71] Chen SH and Zhaori G et al., “Potential clinical applications of siRNA technique: benefits and limitations”, Eur J Clin Invest, 2011;41:221‐232.
    [72] Thakur A and Fitzpatrick S et al., “Strategies for ocular siRNA delivery: potential and limitations of non‐viral nanocarriers”, J Biol Eng, 2012;6:7 10.1186/1754-1611-6-7.
    [73] Aigner A, “Applications of RNA interference: current state and prospects for siRNA‐based strategies in vivo”, Appl Microbiol Biotechnol, 2007;76:9‐21.
    [74] Abid Qureshi, “A review on current status of antiviral siRNA”, Rev Med Virol, 2018 Jul; 28(4).
    [75] F. Cavalieri and M. Ashokkumar et al., “Ultrasonic synthesis of stable, functional lysozyme microbubbles”, Langmuir, 24 (18), 10078-10083, 2008.
    [76] Dejan Arzenšek, “Dynamic light scattering and application to proteins in solutions”, Dynamic light scatterimg theory, 2-18, 2010.
    [77] Knight and Frank B. et al., “On the random walk and Brownian motion”, Transactions of the American Mathematical Society., 103 (2): 218.
    [78] Ling Li1 and Xia Li1 et al., “Multifunctional Nucleus-targeting Nanoparticles with Ultra-high Gene Transfection Efficiency for In Vivo Gene Therapy”, Theranostics, 2017; 7(6):1633-1649.
    [79] Emil Joseph and Gautam Singhvi, “Multifunctional nanocrystals for cancer therapy: a potential nanocarrier”, Nanomaterials for Drug Delivery and Therapy , 2019, Pages 91-116.
    [80] Robert Vogel and Anoop K. Pal, “High-Resolution Single Particle Zeta Potential Characterisation of Biological Nanoparticles using Tunable Resistive Pulse Sensing”, Sci Rep, 2017; 7: 17479.
    [81] Stelios Florinas and Hye Yeong Nam, “Enhanced siRNA delivery using a combination of an arginine-grafted bioreducible polymer, ultrasound, and microbubbles in cancer cells”, Mol Pharm, 2013 May 6; 10(5): 2021–2030.
    [82] Gilda Kalinec and Pru Thein et al., “HEI-OC1 cells as a model for investigating drug cytotoxicity”, Hear Res, 2016 May; 335:105-117.
    [83] Gilda M Kalinec and Channy Park et al., “Working with Auditory HEI-OC1 Cells”, J Vis Exp, 2016 Sep 3; (115):54425.
    [84] Sephra N. Rampersad, “Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays”, Sensors (Basel), 2012; 12(9): 12347–12360.
    [85] Jyoti Roy and Neha Jain et al., “Small RNA proteome as disease biomarker: An incognito treasure of clinical utility”, AGO-Driven Non-Coding RNAs, 2019; page 101-136.
    [86] Kelvin Li and Anushka Brownley et al., “Primer design for RT-PCR”, Methods Mol Biol, 2010;630:271-99.
    [87] Brenda Thornton and Chhandak Basu et al., “Rapid and simple method of qPCR primer design”, Methods Mol Biol, 2015;1275:173-9.
    [88] Anil Kumar and Nikita Chordia, “In silico PCR primer designing and validation”, Methods Mol Biol, 2015;1275:143-51.
    [89] Stephen Bustin and Jim Huggett et al., “qPCR primer design revisited”, Biomol Detect Quantif, 2017 Dec; 14: 19–28.

    無法下載圖示 全文公開日期 2026/02/03 (校內網路)
    全文公開日期 2026/02/03 (校外網路)
    全文公開日期 2026/02/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE