簡易檢索 / 詳目顯示

研究生: 黃柏盛
Po-Sheng Huang
論文名稱: 不同脊椎姿勢對於骨盆不穩定骨折治療之生物力學研究
Biomechanical Investigation of Different Fixation Techniques for Unstable Pelvic Fractures: Effects of Different Spinal Postures
指導教授: 徐慶琪
Ching-Chi Hsu
口試委員: 趙振綱
Ching-Kong Chao
釋高上
Kao-Shang Shih
徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 86
中文關鍵詞: 不穩定型骨盆骨折有限元素分析骨應力植入物強度骨折固定穩定度薦髂螺絲
外文關鍵詞: Unstable pelvic fractures, Bone stress, Iliosacral screw
相關次數: 點閱:221下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在外科手術中,不穩定型骨盆骨折為人體骨折中較不易處理的,此類型骨折常會伴隨骨盆腔內器官受損或失血性休克,而造成較高的發病率與致死率。儘管如此,目前多數骨盆骨折固定系統的生物力學性能,主要仍是根據臨床使用的結果進行評估。而多數臨床研究僅針對單一骨盆骨折固定系統進行評估,僅有少數的研究比較不同骨折固定系統的生物力學性能。因此,本研究的目的是使用有限元法評估不同骨盆骨折固定系統在不同脊椎姿勢的生物力學性能。
    在本文中,使用SolidWorks 2015建立三維人體的脊椎-骨盆-股骨骨骼系統,並匯入ANSYS Workbench 17.0進行有限元素模型建立與計算,考量七種類型的脊椎姿勢下,評估的兩類型旋轉不穩定型骨盆骨折之治療策略。
    由有限元素分析結果得知,不同脊椎姿勢對術後穩定性,骨應力和植入物應力發揮了重要的影響,在側向壓縮型骨盆骨折使用後方薦髂螺絲固定輔以前方骨板固定,其有良好的生物力學表現,另外針對前後壓縮型骨盆骨折,前方型骨板是較為推薦的固定術。本研究的結果可以直接為外科醫生提供有用的建議,並幫助他們了解骨盆骨折固定系統的生物力學。


    In the surgical, unstable pelvic fractures were difficult to handle. This type of fracture often associated with organ damage in the pelvic cavity or hemorrhagic shock and resulted in a higher incidence and mortality. However, the most of biomechanical properties relevant data on pelvic fracture fixation system were mainly based on the results of clinical use. The most clinical studies were evaluated only for a single pelvic fracture fixation system. Only a few studies have compared the biomechanical properties of different fracture fixation systems. Thus, the aim of this study is to evaluate the biomechanical performances of different fixation techniques for unstable pelvic fractures using a finite element model of human pelvic and the effects of different spinal postures.
    In this research, it build three-dimensional finite element model of human spine-pelvis-femur skeletal system in SolidWorks 2015, and import to ANSYS Workbench 17.0 for simulation. It assess two types of rotational instability pelvic fractures with different fixation designs, and consider about effect on seven spine postures.
    Finite element analysis in this study have resulted seven spine postures, which have an important effect on postoperative stability, bone stress and implant stress. The model that used sacroiliac screws and a locking plate might be recommended for the treatment of Lateral compression pelvic fractures. For Antero-Posterior compression pelvic fractures, the plate located in the lower front of the pelvis was a recommended fixation. The outcome of this study could directly provide the surgical suggestion to orthopedic surgeons and help them to understand the biomechanical of unstable fracture.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄索引 VII 表目錄索引 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 人體脊椎與骨盆解剖學構造 3 1.2.1 脊椎介紹 3 1.2.2 骨盆介紹 7 1.3骨盆骨折原因 8 1.4 骨盆骨折分類 9 1.5 後方薦髂螺絲固定器(Posterior iliosacral screw)介紹 12 1.6 有限元素法數值模擬分析 14 1.7 文獻回顧 16 1.8 本文架構 23 第二章 研究方法 24 2.1 研究程序 24 2.2 脊椎-骨盆-股骨骨骼實體模型建立 25 2.2.1 側向壓縮型骨盆骨折及其不同治療模型建立 26 2.2.2 前後壓縮型骨盆骨折及其不同治療模型建立 28 2.2.3 僅薦髂關節骨折及治療模型建立 30 2.2.4 韌帶系統與肌肉系統模擬建立 32 2.3有限元素模擬分析 37 2.3.1 材料與參數 38 2.3.2 網格劃分的方法及大小 43 2.3.3 邊界負載條件 45 2.3.4 數值模擬結果評估 48 第三章 結果 50 3.1 收斂性分析結果 50 3.2 正常模型有限元素分析結果 54 3.2.1 正常模型位移分佈圖 54 3.2.2 正常模型薦骨位移結果 55 3.2.3 正常模型應力分佈圖 56 3.2.4 正常模型骨盆骨應力結果 57 3.3 側向壓縮型骨盆骨折有限元素分析結果 58 3.3.1 側向壓縮型薦骨位移結果 58 3.3.2 側向壓縮型骨折固定穩定度結果 60 3.3.3 側向壓縮型骨盆骨應力結果 63 3.3.4 側向壓縮型前方植入物最大應力結果 64 3.3.5 側向壓縮型薦髂螺絲最大應力結果 65 3.4 前後壓縮型骨盆骨折有限元素分析結果 66 3.4.1 前後壓縮型薦骨位移結果 66 3.4.2 前後壓縮型骨折固定穩定度結果 67 3.4.3 前後壓縮型骨盆骨應力結果 71 3.4.4 前後壓縮型前方植入物應力結果 73 3.4.5 前後壓縮型後方薦髂螺絲應力結果 74 第四章 討論 75 4.1側向壓縮型骨盆骨折結果討論 75 4.2前後壓縮型骨盆骨折結果討論 77 4.3 研究限制 80 第五章 結論與未來展望 81 5.1 結論 81 5.2 未來展望 82

    [1] A. Papathanasopoulos, C. Tzioupis, V. P. Giannoudis, C. Roberts, and P. V. Giannoudis, “Biomechanical aspects of pelvic ring reconstruction techniques: Evidence today,” Injury, vol. 41, no. 12, pp. 1220-7, Dec, 2010.
    [2] A. Durkin, H. C. Sagi, R. Durham, and L. Flint, “Contemporary management of pelvic fractures,” Am J Surg, vol. 192, no. 2, pp. 211-23, Aug, 2006.
    [3] J. Brun, S. Guillot, P. Bouzat, C. Broux, F. Thony, C. Genty, C. Heylbroeck, P. Albaladejo, C. Arvieux, J. Tonetti, and J. F. Payen, “Detecting active pelvic arterial haemorrhage on admission following serious pelvic fracture in multiple trauma patients,” Injury, vol. 45, no. 1, pp. 101-6, Jan, 2014.
    [4] T. B. Alton, and A. O. Gee, “Classifications in brief: young and burgess classification of pelvic ring injuries,” Clin Orthop Relat Res, vol. 472, no. 8, pp. 2338-42, Aug, 2014.
    [5] T. I. Tosounidis, and P. V. Giannoudis, “Pelvic fractures presenting with haemodynamic instability: treatment options and outcomes,” Surgeon, vol. 11, no. 6, pp. 344-51, Dec, 2013.
    [6] M. Kubota, K. Uchida, Y. Kokubo, S. Shimada, H. Matsuo, T. Yayama, T. Miyazaki, D. Sugita, S. Watanabe, and H. Baba, “Postoperative gait analysis and hip muscle strength in patients with pelvic ring fracture,” Gait Posture, vol. 38, no. 3, pp. 385-90, Jul, 2013.
    [7] P. Rommens. "Staged Reconstruction of Pelvic Ring Disruption: Differences in Morbidity, Mortality, Radiologic Results, and Functional Outcomes Between B1, B2/B3, and C-Type Lesions," https://www.ncbi.nlm.nih.gov/labs/articles/11818803/.
    [8] M. Keel, and O. Trentz, “(ii) Acute management of pelvic ring fractures,” Current Orthopaedics, vol. 19, no. 5, pp. 334-344, 2005.
    [9] F. H. Netter. "Netter, F.H., ”Atlas of Human Anatomy, 2nd ed., ” ICON Learning System, (2002).".
    [10] "邱顯峰老師解剖學," http://minibaba.pixnet.net/blog.
    [11] P. Schmitz, F. Baumann, S. Grechenig, A. Gaensslen, M. Nerlich, and M. B. Müller, “The cement-augmented transiliacal internal fixator (caTIFI): an innovative surgical technique for stabilization of fragility fractures of the pelvis,” Injury, vol. 46, pp. S114-S120, 2015.
    [12] J. Tonetti, “Management of recent unstable fractures of the pelvic ring. An update conference supported by the Club Bassin Cotyle. (Pelvis-Acetabulum Club),” Orthop Traumatol Surg Res, vol. 99, no. 1 Suppl, pp. S77-86, Feb, 2013.
    [13] M. L. C. R. J. Peter T. Simonian, Richard M. Harrington and Allan F. Tencer, “The unstable iliac fracture: a biomechanical evaluation of internal fixation,” 1997.
    [14] P. M. Rommens, “Is there a role for percutaneous pelvic and acetabular reconstruction?,” Injury, vol. 38, no. 4, pp. 463-77, Apr, 2007.
    [15] M. Falah, N. Rozen, A. Chezar, A. Hannani, and M. Soudry, “Fixation of posterior pelvic disruption by trans-iliac bar using ISOLA rods and hooks,” Injury Extra, vol. 36, no. 9, pp. 376-379, 2005.
    [16] F. De Iure, M. Cappuccio, M. Palmisani, R. Pascarella, and M. Commessatti, “Lumboiliac fixation in lumbosacral dislocation and associated injuries of the pelvis and lumbosacral junction: a long-term radiological and clinical follow-up,” Injury, vol. 47 Suppl 4, pp. S44-S48, Oct, 2016.
    [17] T. H. E. Varga, J. Powell and M. Tile, “Effects of method of internal fixation of symphyseal disruptions on stability the pelvic ring,” pp. 469-475, , 1995.
    [18] P. Vanderschot, “Treatment options of pelvic and acetabular fractures in patients with osteoporotic bone,” Injury, vol. 38, no. 4, pp. 497-508, Apr, 2007.
    [19] R. Ballesteros, M. Á. Ruiz, J. Del Río, M. Teulón, M. Chacón, and F. J. García-Lázaro, “Traumatic rupture of the symphysis pubis during pregnancy that needed an emergency caesarean section and pelvis reconstruction: A case report,” Injury Extra, vol. 39, no. 10, pp. 320-322, 2008.
    [20] G. Osterhoff, C. Ossendorf, G. A. Wanner, H. P. Simmen, and C. M. Werner, “Posterior screw fixation in rotationally unstable pelvic ring injuries,” Injury, vol. 42, no. 10, pp. 992-6, Oct, 2011.
    [21] Y. Zhao, J. Li, D. Wang, Y. Liu, J. Tan, and S. Zhang, “Comparison of stability of two kinds of sacro-iliac screws in the fixation of bilateral sacral fractures in a finite element model,” Injury, vol. 43, no. 4, pp. 490-4, Apr, 2012.
    [22] B. R. Moed, C. P. O'Boynick, and J. G. Bledsoe, “Locked versus standard unlocked plating of the symphysis pubis in a Type-C pelvic injury: a cadaver biomechanical study,” Injury, vol. 45, no. 4, pp. 748-51, Apr, 2014.
    [23] P. J. Watson, A. Dostanpor, M. J. Fagan, and C. A. Dobson, “The effect of boundary constraints on finite element modelling of the human pelvis,” Med Eng Phys, vol. 43, pp. 48-57, May, 2017.
    [24] A. T. Phillips, P. Pankaj, C. R. Howie, A. S. Usmani, and A. H. Simpson, “Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions,” Med Eng Phys, vol. 29, no. 7, pp. 739-48, Sep, 2007.
    [25] N. Hammer, H. Steinke, U. Lingslebe, I. Bechmann, C. Josten, V. Slowik, and J. Bohme, “Ligamentous influence in pelvic load distribution,” Spine J, vol. 13, no. 10, pp. 1321-30, Oct, 2013.
    [26] V. Goel, B. Monroe, L. Gilbertson, and P. Brinckmann, “Interlaminar Shear Stresses and Laminae Separation in a Disc: Finite Element Analysis of the L3-L4 Motion Segment Subjected to Axial Compressive Loads,” Spine, vol. 20, no. 6, pp. 689-698, 1995.
    [27] “Netter, F.H., ”Atlas of Human Anatomy, 2nd ed., ” ICON Learning System, (2009).”.
    [28] “小小整理網站 SMALLCOLLATION.”
    [29] "E doctor," http://www.edoctoronline.com.
    [30] "Sphenoidbone," http://sphenoidbone.com/.
    [31] A. Faizan, V. K. Goel, A. Biyani, S. R. Garfin, and C. M. Bono, “Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine--a finite element based study,” Clin Biomech (Bristol, Avon), vol. 27, no. 3, pp. 226-33, Mar, 2012.
    [32] S. K. Ha, “Finite element modeling of multi-level cervical spinal segments (C3-C6) and biomechanical analysis of an elastomer-type prosthetic disc,” Med Eng Phys, vol. 28, no. 6, pp. 534-41, Jul, 2006.
    [33] J. E. Kim, Z. Li, Y. Ito, C. D. Huber, A. M. Shih, A. W. Eberhardt, K. H. Yang, A. I. King, and B. K. Soni, “Finite element model development of a child pelvis with optimization-based material identification,” J Biomech, vol. 42, no. 13, pp. 2191-5, Sep 18, 2009.
    [34] K.-S. Shih, C.-C. Hsu, S.-Y. Zhou, and S.-M. Hou, “Biomechanical Investigation of Pedicle Screw-Based Posterior Stabilization Systems for the Treatment of Lumbar Degenerative Disc Disease Using Finite Element Analyses,” Biomedical Engineering: Applications, Basis and Communications, vol. 27, no. 06, pp. 1550060, 2015.

    QR CODE