簡易檢索 / 詳目顯示

研究生: 黃子容
Tzu-Jung Huang
論文名稱: 以密度泛函理論計算研究釩基觸媒表面之硝酸根還原反應
DFT Calculations of Nitrate Reduction Reaction on Vanadium-Based Catalyst Surfaces
指導教授: 周宏隆
Hung-Lung Chou
口試委員: 何清華
Ching-Hwa Ho
王迪彥
Di-Yan Wang
郭聰榮
Tsung-Rong Kuo
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 137
中文關鍵詞: 硝酸根還原反應釩基觸媒吸附能密度泛函理論
外文關鍵詞: Nitrate Reduction Reaction, Ammonia, Vanadium-Based Catalyst, Adsorption energy, DFT
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

永續且低耗能的電化學合成氨是取代傳統Haber–Bosch 工藝的方法之一,但實驗上的低法拉第效率是需待解決的挑戰。本文之計算模擬與文獻中的實驗結果相結合,可為硝酸根還原反應(NO3RR)機制提出更具整體性的探討。一般氮還原反應(NRR)以高解離能的氮氣為原料,NO3RR是以有害環境之工業廢氣、解離能相對低的NO3作為原料,我們選擇釩基金屬作為達成循環經濟的催化劑,同時降低析氫反應(HER)的競爭性影響。
計算結果指出,釩金屬的高吸附能有利於NO3的解離;藉由調整金屬比例以獲得更合適的吸附能,在反應過程中可有利於分子的吸附與脫附。在NO3RR中NO解離(*NO*N)一般被視為是具有較大極限電位的電位決定步驟,中間態NOH的介入(*NO*NOH*N)可以降低過渡態的活化能,尤其VS2和VSe2系統的活化能有明顯降低。缺陷控制的VS2-edge 和 VSe2-edge 系統,以其邊緣暴露的 V 原子作為活性位點,具有更合適的吸附能和更低的極限電位(UL),此與實驗上觀察到的高法拉第效率(FE)與增加的氨產率相對應。各系統中的NO3RR電催化性能(極限電位)排序如下:VS2-edge(−0.83 eV)> VSe2-edge(−0.87 eV)> P-VP(−1.42 eV)> V(−1.49 eV)> V-VP(−1.76 eV)> VS2(−2.24 eV)> VSe2(−3.90 eV)。
VS2-edge是七個系統中最具NO3RR電催化潛力,在*NO*NOH路徑中具有較低的極限電位和較小的活化能。我們解釋了反應機制中利於熱力學趨勢的反應途徑,並通過模擬量化了吸附分子與材料表面原子的交互作用,從旁佐證其與實驗上數據(FE與氨產率)之間的關聯性。本文所指出的結果可為未來發展高性能NO3RR電催化系統提供更具體的方向。


Electrochemical synthesis of ammonia can be a potential alternative method to Haber–Bosch process yet the challenges to be resolved. The combination of simulations and experiment provides a more comprehensive understanding of the mechanism for nitrate reduction reaction (NO3RR) for these systems. The NO3 was used as feed material which was the one of common industrial exhaust gas with lower dissociation energy, and the V species selected as a catalyst towards the recycling economy, so that NO3RR is less affected by the competitive hydrogen evolution reaction (HER) compared with the traditional nitrogen reduction reaction (NRR).
The simulation results illustrated that higher adsorption energy of vanadium metal can be beneficial to the dissociation of NO3. Adjusting the metal ratio to obtain a more appropriate adsorption energy can make the molecule be adsorbed and desorbed more easily. The dissociation of NO in the reduction reaction (*NO*N) is commonly considered the potential-determining step (PDS) for NO3RR with a greater limiting potential (UL), the intervention of intermediate state NOH (*NO*NOH*N) can reduce the transition state activation energy, especially in the system of VS2 and VSe2. The systems of VS2-edge and VSe2-edge in which the defect-controlled edge V atoms are exposed as active sites have a more appropriate adsorption energy and lower limiting potential, which are corresponds to the experimentally higher faradaic efficiency and ammonia yield. The electrocatalytic performance and UL of NO3RR in each system is ranked as follows: VS2-edge (−0.83 eV) > VSe2-edge (−0.87 eV) > P-VP (−1.42 eV) > V (−1.49 eV) > V-VP (−1.76 eV) > VS2 (−2.24 eV) > VSe2 (−3.90 eV).

Among the seven systems, VS2-edge as the most potential candidate for NO3RR with a lower limiting potential and smaller activation energy in pathway of *NO*NOH. We explain the thermodynamically favored reaction pathways in the mechanism and quantify the intermolecular interactions through simulations, thereby confirming the correlation with the experimental faradaic efficiency and ammonia yield. These results could provide clearer instructions for the development of future high-performance NO3RR electrocatalytic systems. 

中文摘要   I ABSTRACT II 誌謝      IV CONTENT V LIST OF TABLES VII LIST OF FIGURES VIII ABBREVIATIONS XIII LIST OF ABBREVIATIONS XIV LIST OF SYMBOLS XV Chapter 1. Introduction 1 1.1 Background 1 1.1.1 The role of Ammonia 1 1.1.2 Ammonia for Agriculture and Energy 1 1.1.3 Haber–Bosch process 3 1.1.4 Electrocatalytic Nitrogen Reduction Reaction (NRR) 4 1.1.5 NO3 as feedstock of NRR 5 1.1.6 Catalysts for NO3RR 8 1.2 Vanadium-based Catalysts 12 1.2.1 Vanadium (V) 12 1.2.2 Vanadium Phosphide (VP) 15 1.2.3 Vanadium Disulfide (VS2) 17 1.2.4 Vanadium Diselenide (VSe2) 20 1.3 Motivation 22 Chapter 2. Methodology 24 2.1 Density Functional Theory 24 2.1.1 Electron density 25 2.1.2 Thomas–Fermi model (TF model) 26 2.1.3 Hohenberg–Kohn mode (HK model) 26 2.1.4 Kohn–Sham equations (KS equations) 27 2.1.5 Generalized Gradient Approximation Functionals (GGA) 30 2.2 Computational Details 31 2.2.1 Methods and Parameters 31 2.2.2 Slab models 34 2.2.3 Adsorption energy 34 2.2.4 NO3RR Mechanism 35 2.2.5 Competitive HER 38 2.2.6 Activation energy and Transition state 40 2.2.7 Electronic structure 42 2.2.8 Selectivity for NO3RR 44 Chapter 3. Results and Discussion 45 3.1 Slab model and X-ray Diffraction (XRD) 45 3.2 NO3 Adsorption 51 3.3 NO3RR in each system 58 3.4 Electronic structure 66 3.5 Activity and Selectivity for NO3RR 77 Chapter 4. Conclusion (and Future Works) 80 REFERENCES 83 APPENDICES 110

[1] G. Qing, R. Ghazfar, S. T. Jackowski, F. Habibzadeh, M. M. Ashtiani, C. P. Chen, M. R. Smith, and T. W. Hamann, “Recent advances and challenges of electrocatalytic N2 reduction to ammonia,” Chem. Rev., vol. 120, no. 12, pp. 5437–5516, 2020.
[2] J. B. Howard and D. C. Rees, “Structural basis of biological nitrogen fixation,” Chem. Rev., vol. 96, no. 7, pp. 2965–2982, 1996.
[3] J. A. Brandes, N. Z. Boctor, G. D. Cody, B. A. Cooper, R. M. Hazen, and H. S. Yoder Jr, “Abiotic nitrogen reduction on the early Earth,” Nature, vol. 395, no. 6700, pp. 365–367, 1998.
[4] R. D. Milton, R. Cai, S. Abdellaoui, D. Leech, A. L. De Lacey, M. Pita, and S. D. Minteer, “Bioelectrochemical Haber–Bosch Process: An Ammonia‐Producing H2/N2 Fuel Cell,” Angew. Chem. Int. Ed., vol. 56, no. 10, pp. 2680–2683, 2017.
[5] C. Philibert, “Renewable Energy for Industry,” Paris: International Energy Agency, vol. 65, 2017.
[6] L. Fernández, “Ammonia production worldwide 2010-2021,” statista, 2022. Retrieved May 25, 2022, from https://www.statista.com/statistics/1266378/global-ammonia-production/
[7] S. Chen, S. Perathoner, C. Ampelli, and G. Centi Stud, “Electrochemical dinitrogen activation: To find a sustainable way to produce ammonia,” Surf. Sci. Catal., vol. 178, pp. 31–46, 2019.
[8] “Population estimates and projections,” The World Bank, 2022. Retrieved May 25, 2022, from https://datacatalog.worldbank.org/dataset/population-estimates-and-projections
[9] “Energy Transition Progress Report 2021,” Shell, 2021. Retrieved May 25, 2022, from https://reports.shell.com/energy-transition-progress-report/2021/
[10] “World Population Prospects: The 2019 Revision,” United Nations, Department of Economic and Social Affairs, Population Division, 2019. Retrieved May 25, 2022, from https://esa.un.org/unpd/wpp/publications/
[11] “Energy outlook 2022,” BP, 2022. Retrieved May 25, 2022, from https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html
[12] “Renewable Energy to Fuels Through Utilization of Energy-Dense Liquids (REFUEL) Program Overview,” U.S. Department of Energy, 2020. Retrieved May 25, 2022, from https://arpa-e.energy.gov/sites/default/files/documents/files/REFUEL_ProgramOverview.pdf
[13] S. Wang, F. Ichihara, H. Pang, H. Chen, and J. Ye, “Nitrogen fixation reaction derived from nanostructured catalytic materials,” Adv. Funct. Mater., vol. 28, no. 50, pp. 1803309, 2018.
[14] L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, and S. Z. Qiao, “Two-Dimensional Mosaic Bismuth Nanosheets for Highly Selective Ambient Electrocatalytic Nitrogen Reduction,” ACS Catal., vol. 9, no. 4, pp. 2902–2908, 2019.
[15] L. Li, C. Tang, D. Yao, Y. Zheng, and S. Z. Qiao, “Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte,” ACS Energy Lett., vol. 4, no. 9, pp. 2111–2116, 2019.
[16] M. Aziz, A. T. Wijayanta, and A. B. D. Nandiyanto, “Ammonia as effective hydrogen storage: A review on production, storage and utilization,” Energies, vol. 13, no. 12, pp. 3062, 2020.
[17] K. E. Lamb, M. D. Dolan, and D. F. Kennedy, “Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification,” Int. J. Hydrogen Energy, vol. 44, no. 7, pp. 3580–3593, 2019.
[18] A. Valera-Medina, H. Xiao, M. Owen-Jones, W. I. F. David, and P. J. Bowen, “Ammonia for power,” Prog. Energy Combust. Sci., vol. 69, pp. 63–102, 2018.
[19] “Annual Report 2019. Crop Nutrition Company for the Future” Yara, 2020.Retrieved May 25, 2022, from https://ml-eu.globenewswire.com/Resource/Download/f3eea201-bdb5-44e2-9966-5ca682894c03
[20] R. F. Service, “Liquid sunshine,” Science, vol. 361, pp. 120–123, 2018.
[21] G. Parkinson, “Fortescue plans Australia’s first major green ammonia plant near Brisbane,” Renew Economy, 2021. Retrieved May 25, 2022, from https://reneweconomy.com.au/fortescue-plans-australias-first-major-green-ammonia-plant-near-brisbane/
[22] J. Humphreys, R. Lan, and S. Tao, “Development and recent progress on ammonia synthesis catalysts for Haber–Bosch process,” Adv. Energy Sustain. Res., vol. 2, no. 1, pp. 2000043, 2021.
[23] J. S. Anderson, J. Rittle, and J. C. Peters, “Catalytic conversion of nitrogen to ammonia by an iron model complex,” Nature, vol. 501, no. 7465, pp. 84–87, 2013.
[24] P. J. Chirik, “One electron at a time,” Nat. Chem., vol. 1, no. 7, pp. 520–522, 2009.
[25] M. A. Shipman and M. D. Symes, “Recent progress towards the electrosynthesis of ammonia from sustainable resources,” Catal. Today, vol. 286, pp. 57–68, 2017.
[26] C. J. Van der Ham, M. T. Koper, and D. G. Hetterscheid, “Challenges in reduction of dinitrogen by proton and electron transfer,” Chem. Soc. Rev., vol. 43, no. 15, pp. 5183–5191, 2014.
[27] T. Kandemir, M. E. Schuster, A. Senyshyn, M. Behrens, and R. Schlögl, “The Haber–Bosch process revisited: On the real structure and stability of ammonia iron” under working conditions,” Angew. Chem., Int. Ed., vol. 52, no. 48, pp. 12723–12726, 2013.
[28] L. Fernández, “Global production capacity of ammonia 2018-2030” statista, 2022. Retrieved June 6, 2022, from https://www.statista.com/statistics/1065865/ammonia-production-capacity-globally/
[29] J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter, “How a century of ammonia synthesis changed the world,” Nat. Geosci., vol. 1, no. 10, pp. 636–639, 2008.
[30] S. L. Foster, S. I. P. Bakovic, R. D. Duda, S. Maheshwari, R. D. Milton, S. D. Minteer, M. J. Janik, J. N. Renner, and L. F. Greenlee, “Catalysts for nitrogen reduction to ammonia,” Nat. Catal., vol. 1, no. 7, pp. 490–500, 2018.
[31] “Ammonia Technology Roadmap,” International Energy Agency, 2021. Retrieved May 25, 2022, form https://www.iea.org/reports/ammonia-technology-roadmap
[32] C. Tang and S. Z. Qiao, “How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully,” Chem. Soc. Rev., vol. 48, no. 12, pp. 3166–3180, 2019.
[33] Y. Ren, C. Yu, X. Tan, H. Huang, Q. Wei, and J. Qiu, “Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives,” Energy Environ. Sci., vol.14, no. 3, pp. 1176–1193, 2021.
[34] Y. Li, H. Wang, C. Priest, S. Li, P. Xu, and G. Wu, “Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions,” Adv. Mater., vol. 33, no. 6, pp. 2000381, 2021.
[35] S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su, and G. Centi, “Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon‐nanotube‐based electrocatalyst,” Angew. Chem. Int. Ed., vol. 129, no. 10, pp. 2743– 2747, 2017.
[36] V. Kordali, G. Kyriacou, and C. Lambrou, “Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell,” Chem. Commun., vol. 17, pp. 1673–1674, 2000.
[37] J. Wang, L. Yu, L. Hu, G. Chen, H. Xin, and X. Feng, “Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential,” Nat. Commun., vol. 9, no. 1, pp. 1–7, 2018.
[38] J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, and R. R. Schrock, “Beyond fossil fuel–driven nitrogen transformations,” Science, vol. 360, no. 6391, pp. eaar6611, 2018.
[39] E. E. van Tamelen and D. A. Seeley, “Catalytic fixation of molecular nitrogen by electrolytic and chemical reduction,” J. Am. Chem. Soc., vol. 91, no. 18, pp. 5194–5194, 1969.
[40] G. Marnellos and M. Stoukides, “Ammonia synthesis at atmospheric pressure,” Science, vol. 282, no. 5386, pp. 98–100, 1998.
[41] Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu, Q. Zhang, L. Meng, Z. Shi, L. Zheng, C. Wang, Z. Zhang, and W. Zheng, “Rational design of Fe–N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution,” ACS Catal., vol. 9, no. 1, pp. 336–344, 2018.
[42] L. Hu, A. Khaniya, J. Wang, G. Chen, W. E. Kaden, and X. Feng, “Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst,” ACS Catal., vol. 8, no. 10, pp. 9312–9319, 2018.
[43] W. Guo, K. Zhang, Z. Liang, R. Zou, and Q. Xu, “Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design,” Chem. Soc. Rev., vol. 48, no. 24, pp. 5658–5716, 2019.
[44] F. Gholami, M. Thomas, Z. Gholami, and M. Vakili, “Technologies for the nitrogen oxides reduction from flue gas: A review,” Sci. Total Environ., nol. 714, pp. 136712–136737, 2020.
[45] “Form EIA-860 detailed data with previous form data (EIA-860A/860B)” U.S. Energy Information Administration, 2022. Retrieved May 25, 2022, form https://www.eia.gov/electricity/data/eia860/
[46] “U.S. Electricity Overview,” U.S. Energy Information Administration, 2022. Retrieved May 25, 2022, form http://www.eia.gov/beta/realtime_grid/
[47] N. Sönnichsen, “Global operational coal-fired power stations by country 2022,” statista, 2022. Retrieved May 25, 2022, form https://www.statista.com/statistics/859266/number-of-coal-power-plants-by-country/#professiona
[48] N. Sönnichsen, “Installed global coal power plant capacity in select countries 2022,” statista, 2022. Retrieved May 25, 2022, form https://www.statista.com/statistics/530569/installed-capacity-of-coal-power-plants-in-selected-countries/
[49] D. E. Canfield, A. N. Glazer, and P. G. Falkowski, “The evolution and future of Earth's nitrogen cycle,” Science, vol. 330, no. 6001, pp. 192–196, 2010.
[50] L. Su, D. Han, G. Zhu, H. Xu, W. Luo, L. Wang, W. Jiang, A. Dong, and J. Yang, “Tailoring the assembly of iron nanoparticles in carbon microspheres toward high-performance electrocatalytic denitrification,” Nano Lett., vol. 19, no. 8, pp. 5423–5430, 2019.
[51] P. E. Fixen and F. B. West, “Nitrogen fertilizers: meeting contemporary challenges,” Ambio, vol. 31, no. 2, pp. 169–176, 2002.
[52] J. N. Galloway, A. R. Townsend, J. W. Erisman, M. Bekunda, Z. C. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, and M. A. Sutton, “Transformation of the nitrogen cycle: recent trends, questions, and potential solutions,” Science, vol. 320, no. 5878, pp. 889–892, 2008.
[53] J. Sliggers and W. Kakebeeke, “Clearing the air. 25 years of the Convention on Long-range Transboundary Air Pollution,” U.S. Department of Energy Office of Scientific and Technical Information, 2004. Retrieved May 25, 2022, from https://www.osti.gov/etdeweb/biblio/20567806
[54] “Gothenburg Protocol,” United Nations Economic Commission for Europe, 2021. Retrieved May 25, 2022, from https://unece.org/gothenburg-protocol
[55] W. H. Lewis and H. L. Prillaman, “Reasonably Available Control Technology under the Clean Air Act: Is EPA Following Its Statutory Mandate,” Harv. Envtl. L. Rev., vol. 16, pp. 343–364, 1992.
[56] R. Grover and M. L. Bradford, “Texas NOx state implementation plan for Houston‐Galveston area,” Environ. Prog., vol. 20, no. 4, pp. 197–205, 2001.
[57] D. E. Constantin, C. Bocăneala, M. Voiculescu, A. Roşu, A. Merlaud, M. V. Roozendael, and P. L. Georgescu, “Evolution of SO2 and NOx emissions from several large combustion plants in europe during 2005–2015,” Int. J. Environ. Res. Public Health, vol. 17, pp. 3630, 2020.
[58] P. Carro, J. Choi, D. MacFarlane, A. N. Simonov, J. M. Doña-Rodriguez, and L. M. Azofra, “Competition between metal-catalysed electroreduction of dinitrogen, protons, and nitrogen oxides: a DFT perspective,” Catal. Sci. Technol., vol. 12, no. 9, pp. 2856–2864, 2022.
[59] F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang, and D. R. MacFarlane, “Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids,” Energy Environ. Sci., vol. 10, no. 12, pp. 2516–2520, 2017.
[60] Z. Li, G. Wen, J. Liang, T. Li, Y. Luo, Q. Kong, X. Shi, A.M. Asiri, Q. Liu, and X. Sun, “High-efficiency nitrate electroreduction to ammonia on electrodeposited cobalt–phosphorus alloy film,” Chem. Commun., vol. 57, no. 76, pp. 9720–9723, 2021.
[61] A. Stirling, I. Pápai, J. Mink, and D. R. Salahub, “Density functional study of nitrogen oxides,” J. Chem. Phys., vol. 100, no. 4, pp. 2910–2923,1994.
[62] S. W. Benson, “III-Bond energies,” J. Chem. Educ., vol. 42, no. 9, pp. 502–518, 1965.
[63] J. A. Dean, “Lange's Handbook of Chemistry,” McGraw-Hill Company, New York, pp. 4.41–4.53, 1999.
[64] D. G. Musaev, and K. Morokuma, “Ab initio molecular orbital study of the mechanism of HH, CH, NH, OH and Si-H bond activation on transient cyclopentadienylcarbonylrhodium,” J. Am. Chem. Soc., vol. 117, no. 2, pp. 799–805, 1995.
[65] G. E. Dima, A. C. A. de Vooys, and M. T. M. Koper, “Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions,” J. Electroanal. Chem., vol. 554/555, pp. 15–23, 2003.
[66] Q. Ge and D. A. King, “Energetics, geometry and spin density of NO chemisorbed on Pt {111},” Chem. Phys. Lett., vol. 285, pp. 15–20, 1998.
[67] M. Neurock, A. van Santen, W. Biemolt, and A.P.J. Jansen, “Atomic and molecular oxygen as chemical precursors in the oxidation of ammonia by copper,” J. Am. Chem. Soc., vol. 116, no. 15, pp. 6860–6872, 1994.
[68] D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson, B. E. McCandless, R. W. Birkmire, and J. G. Chen, “Low‐cost hydrogen‐evolution catalysts based on monolayer platinum on tungsten monocarbide substrates,” Angew. Chem., Int. Ed., vol. 49, no. 51, pp. 9859– 9862, 2010.
[69] Z. W. Chen, D. Higgins, A. P. Yu, L. Zhang, and J. J. Zhang, “A review on non-precious metal electrocatalysts for PEM fuel cells,” Energy Environ. Sci., vol. 4, no. 9, pp. 3167–3192, 2011.
[70] “Latest and Historical Metal Prices,” Metalary, 2022. Retrieved April 20, 2022, from https://www.metalary.com
[71] “SMM Spot prices,” Shanghai Metals Market, 2022. Retrieved April 20, 2022, from https://www.metal.com/
[72] L. Fernández, “Price of sulfur in the United States from 2014 to 2021,” statista, 2022. Retrieved April 20, 2022, from https://www.statista.com
[73] “Commodities,” Trading Economics, 2022. Retrieved April 20, 2022, from https://tradingeconomics.com/commodities
[74] “Phosphate rock prices,” The Global Economy, 2022. Retrieved April 20, 2022, from https://www.theglobaleconomy.com/world/phosphate_rock_prices/
[75] “LIVE Vanadium Price, News and Articles,” Silver Elephant Mining Corp, 2022. Retrieved April 20, 2022, from https://www.vanadiumprice.com/
[76] “Global Industrial Catalyst Market Outlook,” Expert Market Research, 2022. Retrieved May 25, 2022, from https://www.expertmarketresearch.com/reports/industrial-catalyst-market
[77] B. Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou, and X. Wang, “A metal–organic framework-derived bifunctional oxygen electrocatalyst,” Nat. Energy, vol. 1, no. 1, pp. 1–8, 2016.
[78] K. Tanifuji and Y. Ohki, “Metal–Sulfur Compounds in N2 Reduction and Nitrogenase-Related Chemistry,” Chem. Rev., vol. 120, no. 12, pp. 5194–5251, 2020.
[79] A. R. Singh, B. A. Rohr, J. A. Schwalbe, M. Cargnello, K. Chan, T. F. Jaramillo, I. Chorkendorff, and J. K. Nørskov, “Electrochemical Ammonia Synthesis–The Selectivity Challenge,” ACS Catal., vol. 7, no. 1, pp. 706–709, 2017.
[80] C. Guo, J. Ran, A. Vasileff, and S. Z. Qiao, “Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions,” Energy Environ. Sci., vol. 11, no. 1, pp. 45–56, 2018.
[81] D. Yan, H. Li, C. Chen, Y. Zou, and S. Wang, “Defect engineering strategies for nitrogen reduction reactions under ambient conditions,” Small Methods, vol. 3, no. 6, pp. 1800331, 2018.
[82] X. Cui, C. Tang, and Q. Zhang, “A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions,” Adv. Energy Mater., vol. 8, no. 22, pp. 1800369, 2018.
[83] A. J. Medford, A. Vojvodic, J. S. Hummelshøj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, and J. K. Nørskov, “From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis,” J. Catal., vol. 328, pp. 36–42, 2015.
[84] E. Skulason, T. Bligaard, S. Gudmundsdottir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jonsson, and J. K. Norskov, “A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction,” Phys. Chem. Chem. Phys., vol. 14, no. 3, pp. 1235–1245, 2012.
[85] O. A. Petrii and T. Ya Safonova, “Electroreduction of nitrate and nitrite anions on platinum metals: a model process for elucidating the nature of the passivation by hydrogen adsorption,” J. Electroanal. Chem., vol. 331, pp. 897–912, 1992.
[86] “Abundance of elements in the earth’s crust and in the sea,” CRC Handbook of Chemistry and Physics, 102nd Edition, 2021. Retrieved May 25, 2022, from https://hbcp.chemnetbase.com/faces/documents/14_10/14_10_0001.xhtml
[87] W. D. Callister, “Materials Science and Engineering: An Introduction,” New York: Wiley, 2018. Retrieved May 25, 2022, from https://ftp.idu.ac.id/wp-content/uploads/ebook/tdg/TEKNOLOGI%20REKAYASA%20MATERIAL%20PERTAHANAN/Materials%20Science%20and%20Engineering%20An%20Introduction%20by%20William%20D.%20Callister,%20Jr.,%20David%20G.%20Rethwish%20(z-lib.org).pdf
[88] A. Y. Esayed and D. O. Northwood, “Metal hydrides: A review of group V transition metals—Niobium, vanadium and tantalum,” Int. J. Hydrogen Energy, vol. 17, no. 1, pp. 41–52, 1992.
[89] E. F. Baroch, “Vanadium and vanadium alloys,” Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc. pp. 1–18, 2000.
[90] J. N. Galloway, J. D. Aber, J. W. Erisman, S. P. Seitzinger, R. W. Howarth, E. B. Cowling, and B. J. Cosby, “The nitrogen cascade,” Bioscience, vol. 53, no. 4, pp. 341–356, 2003.
[91] R. R. Eady, “Structure− function relationships of alternative nitrogenases,” Chem. Rev., vol. 96, no. 7, pp. 3013–3030, 1996.
[92] R. Zhang, H. Guo, L. Yang, Y. Wang, Z. Niu, H. Huang, H. Chen, L. Xia, T. Li, X. Shi, X. Sun, B. Li, and Q. Liu, “Electrocatalytic N2 fixation over hollow VO2 microspheres at ambient conditions,” ChemElectroChem, vol. 6, no. 4, pp. 1014–1018, 2019.
[93] W. Fang, J. Zhao, T. Wu, Y. Huang, L. Yang, C. Liu, Q. Zhang, K. Huang, and Q. Yan, “Hydrophilic engineering of VO x-based nanosheets for ambient electrochemical ammonia synthesis at neutral pH,” J. Mater. Chem. A, vol. 8, no. 12, pp. 5913–5918, 2020.
[94] N. Zhang, X. Feng, D. Rao, X. Deng, L. Cai, B. Qiu, R. Long, Y. Xiong, Y. Lu, and Y. Chai, “Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation,” Nat. Commun., vol. 11, no. 1, pp. 1–11, 2020.
[95] A.N. Zhang, Y. Liang, H. Zhang, Z. Geng, and J. Zeng, “Doping regulation in transition metal compounds for electrocatalysis,” Chem. Soc. Rev., vol. 50, no. 17, pp. 9817–9844, 2021.
[96] Y. J. Wang, H. Fan, A. Ignaszak, L. Zhang, S. Shao, D. P. Wilkinson, and J. Zhang, “Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal-air battery oxygen reduction and evolution reactions,” Chem. Eng. J., vol. 348, pp. 416–437, 2018.
[97] Y. Deng, Z. Liu, A. Wang, D. Sun, Y. Chen, L. Yang, J. Pang, H. Li, H. Li, H. Liu, and W. Zhou, “Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity,” Nano Energy, vol. 62, pp. 338–347, 2019.
[98] Z. Zhuang, J. Huang, Y. Li, L. Zhou, and L. Mai, “The Holy Grail in Platinum‐Free Electrocatalytic Hydrogen Evolution: Molybdenum‐Based Catalysts and Recent Advances,” ChemElectroChem, vol. 6, no. 14, pp. 3570–3589, 2019.
[99] Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, and W. Chen, “Two-dimensional transition metal dichalcogenides: interface and defect engineering,” Chem. Soc. Rev., vol. 47, no. 9, pp. 3100–3128, 2018.
[100] L. Zhang and Z. Hu, “Point defects in VS2 monolayer towards NH3 synthesis,” Mater. Des., vol. 209, pp. 110006, 2021.
[101] Z. Pu, T. Liu, I. S. Amiinu, R. Cheng, P. Wang, C. Zhang, P. Ji, W. Hu, J. Liu, and S. Mu, “Transition‐metal phosphides: activity origin, energy‐related electrocatalysis applications, and synthetic strategies,” Adv. Funct. Mater., vol. 30, no. 45, pp. 2004009, 2020.
[102] L. Zhang, L. X. Ding, G.F. Chen, X.F. Yang, and H. H. Wang, “Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets,” Angew. Chem., vol. 131, no. 9, pp. 2638–2642, 2019.
[103] W. Qiu, X. Y. Xie, J. Qiu, W. H. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri, G. Cui, B. Tang, and X. Sun, “High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst,” Nat. Commun., vol. 9, no. 1, pp. 1–8, 2018.
[104] Y. Zhou, X. Yu, F. Sun, and J. Zhang, “MoP supported on reduced graphene oxide for high performance electrochemical nitrogen reduction,” Dalton Trans., vol. 49, no. 4, pp. 988–992, 2020.
[105] P. Liu and J. A. Rodriguez, “Catalytic properties of molybdenum carbide, nitride and phosphide: a theoretical study,” Catal. Lett., vol. 91, no.3, pp. 247–252, 2003.
[106] P. Liu and J. A. Rodriguez, “Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P (001) Surface:  The Importance of Ensemble Effect,” J. Am. Chem. Soc., vol. 127, no. 42, pp. 14871–14878, 2005.
[107] E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, and R. E. Schaak, “Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction,” J. Am. Chem. Soc., vol. 135, no. 25, pp. 9267–9270, 2013.
[108] Y. Shi and B. Zhang, “Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction,” Chem. Soc. Rev., vol. 45, no. 6, pp. 1529–1541, 2016.
[109] W. Guo, Z. Liang, J. Zhao, B. Zhu, K. Cai, R. Zou, and Q. Xu, “Hierarchical cobalt phosphide hollow nanocages (CoP HNC) toward electrocatalytic ammonia synthesis under ambient pressure and room temperature,” Small Meth., vol. 2, no. 12, pp. 1800204, 2018.
[110] M. Han, G. Wang, H. Zhang and H. Zhao, “Theoretical study of single transition metal atom modified MoP as a nitrogen reduction electrocatalyst,” Phys. Chem. Chem. Phys., vol. 21, no. 11, 5950–5955, 2019.
[111] L. Zhang, L. X. Ding, G. F. Chen, X. Yang, and H. Wang, “Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets,” Angew. Chem., vol. 131, no. 9, pp. 2638–2642, 2019.
[112] X. Zhu, T. Wu, L. Ji, C. Li, T. Wang, S. Wen, S. Gao, X. Shi, Y. Luo, Q. Peng, and X. Sun, “Ambient electrohydrogenation of N2 for NH3 synthesis on non-metal boron phosphide nanoparticles: the critical role of P in boosting the catalytic activity,” J. Mater. Chem. A, vol. 7, no. 27, pp. 16117–16121, 2019.
[113] X. Zhu, T. Wu, L. Ji, Q. Liu, Y. Luo, G. Cui, Y. Xiang, Y. Zhang, B. Zheng, and X. Sun, “Unusual electrochemical N2 reduction activity in an earth-abundant iron catalyst via phosphorous modulation,” Chem. Commun., vol. 56, no. 5, pp. 731–734, 2020.
[114] J. Su, H. Zhao, W. Fu, W. Tian, X. Yang, H. Zhang, F. Ling, and Y. Wang, “Fine rhodium phosphides nanoparticles embedded in N, P dual-doped carbon film: new efficient electrocatalysts for ambient nitrogen fixation,” Appl. Catal. B-Environ., vol. 265, pp. 118589, 2020.
[115] R. Zhao, C. Liu, X. Zhang, X. Zhu, P. Wei, L. Ji, Y. Guo, S. Gao, Y. Luo, Z. Wang, and X. Sun, “An ultrasmall Ru2P nanoparticles–reduced graphene oxide hybrid: an efficient electrocatalyst for NH3 synthesis under ambient conditions,” J. Mater. Chem. A, vol. 8, no. 1, pp. 77–81, 2020.
[116] P. Wei, Q. Geng, A. I. Channa, X. Tong, Y. Luo, S. Lu, G. Chen, S. Gao, Z. Wang, and X. Sun, “Electrocatalytic N2 reduction to NH3 with high faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil,” Nano Res., vol. 13, no. 11, pp. 2967–2972, 2020.
[117] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol., vol. 7, no. 11, pp. 699–712, 2012.
[118] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol., vol. 6, no. 3, pp. 147–150, 2011.
[119] J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science, vol. 331, no. 6017, pp. 568–571, 2011.
[120] J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, and Y. Xie, “Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors,” J. Am. Chem. Soc., vol. 133, no. 44, pp. 17832–17838, 2011.
[121] M. Makaremi, S. Grixti, K. T. Butler, G. A. Ozin, and C. V. Singh, “Band engineering of carbon nitride monolayers by N-type, P-type, and isoelectronic doping for photocatalytic applications,” ACS Appl. Mater. Interfaces, vol. 10, no. 13, pp. 11143–11151, 2018.
[122] Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater., vol. 24, no. 17, pp. 2320–2325, 2012.
[123] E. Xenogiannopoulou, P. Tsipas, K. E. Aretouli, D. Tsoutsou, S. A. Giamini, C. Bazioti, G. P. Dimitrakopulos, P. Komninou, S. Brems, C. Huyghebaert, I. P. Radu, and A. Dimoulas, “High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN (0001)/Si (111) substrates by molecular beam epitaxy,” Nanoscale, vol. 7, no. 17, pp. 7896–7905, 2015.
[124] X. Yao, Z. Chen, Y. Wang, X. Lang, W. Gao, Y. Zhu, and Q. Jiang, “Activated basal planes of WS2 by intrinsic defects as catalysts for the electrocatalytic nitrogen reduction reaction,” J. Mater. Chem. A, vol. 7, no. 45, pp. 25961–25968, 2019.
[125] C. Tan and H. Zhang, “Two-Dimensional Transition Metal Dichalcogenide Nanosheet-Based Composites,” Chem. Soc. Rev., vol. 44, no. 9, pp. 2713–2731, 2015.
[126] Y. Wang, Z. Sofer, J. Luxa, and M. Pumera, “Lithium exfoliated vanadium dichalcogenides (VS2, VSe2, VTe2) exhibit dramatically different properties from their bulk counterparts,” Adv. Mater. Interfaces, vol. 3, no. 23, pp. 1600433, 2016.
[127] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem., vol. 5, no. 4, pp. 263–275, 2013.
[128] Y. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu, and B. Huang, “Evidence of the Existence of Magnetism in Pristine VX2 Monolayers (X = S, Se) and Their Strain-Induced Tunable Magnetic Properties,” ACS Nano, vol. 6, no. 2, pp. 1695–1701, 2012.
[129] K. Xu, P. Chen, X. Li, C. Wu, Y. Guo, J. Zhao, X. Wu, and Y. Xie, “Ultrathin nanosheets of vanadium diselenide: a metallic two‐dimensional material with ferromagnetic charge‐density‐wave behavior,” Angew. Chem. Int. Ed., vol. 52, no. 40, pp. 10477–10481, 2013.
[130] W. Fang, H. Zhao, Y. Xie, J. Fang, J. Xu, and Z. Chen, “Facile Hydrothermal Synthesis of VS2/graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes,” ACS Appl. Mater. Interfaces, vol. 7, no. 23, pp.13044–13052, 2015.
[131] H. Liang, H. Shi, D. Zhang, F. Ming, R. Wang, J. Zhuo, and Z. Wang, “Solution Growth of Vertical VS2 Nanoplate Arrays for Electrocatalytic Hyrogen Evolution,” Chem. Mater., vol. 28, no. 16, pp. 5587–5591, 2016.
[132] J. Zhang, C. Zhang, Z. Wang, J. Zhu, Z. Wen, X. Zhao, X. Zhang, J. Xu, and Z. Lu, “Synergistic Interlayer and Defect Engineering in VS2 Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction,” Small, vol. 14, no. 9, pp. 1703098, 2018.
[133] X. Chia, A. Ambrosi, P. Lazar, Z. Sofer, and M. Pumera, “Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX2, M= V, Nb, and Ta; X= S, Se, and Te),” J. Mater. Chem. A, vol. 4, no. 37, pp. 14241–14253, 2016.
[134] Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, and I. Chorkendorff, “Layered nanojunctions for hydrogen‐evolution catalysis,” Angew. Chem., vol. 125, no. 13, pp. 3709–3713, 2013.
[135] L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang, and X. Sun, “Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies,” Adv. Mater., vol. 30, no. 28, pp. 1800191, 2018.
[136] B. H. R. Suryanto, D. Wang, L. M. Azofra, M. Harb, L. Cavallo, R. Jalili, D. R. G. Mitchell, M. Chatti, and D. R. MacFarlane, “MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia,” ACS Energy Lett., vol. 4, no. 2, pp. 430–435, 2018.
[137] Q. Li, Y. Guo, Y. Tian, W. Liu, and K. Chu, “Activating VS2 basal planes for enhanced NRR electrocatalysis: the synergistic role of S-vacancies and B dopants,” J. Mater. Chem. A, vol. 8, no. 32, pp. 16195–16202, 2020.
[138] Q. Liu, T. Xu, Y. Luo, Q. Kong, T. Li, S. Lu, A. A. Alshehri, K. A. Alzahrani, and X. Sun, “Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis,” Curr. Opin. Electrochem., vol. 29, pp. 100766, 2021.
[139] Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, and Z. Zhang, “Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets” J. Am. Chem. Soc., vol. 138, no. 25, pp. 7965–7972, 2016.
[140] D. Le, T.B. Rawal, and T.S. Rahman, “Single-Layer MoS2 with Sulfur Vacancies: Structure and Catalytic Application,” J. Phys. Chem. C, vol. 118, no. 10, pp. 5346–5351, 2014.
[141] L. Lin, N. Miao, Y. Wen, S. Zhang, P. Ghosez, Z. Sun, and D. A. Allwood, “Sulfur-Depleted Monolayered Molybdenum Disulfide Nanocrystals for Superelectochemical Hydrogen Evolution Reaction,” ACS Nano, vol. 10, no. 9, pp. 8929–8937, 2016.
[142] J. Hong, Z. Hu, M. Probert, K. Li, D. Lv, X. Yang, L. Gu, N. Mao, Q. Feng, L. Xie, J. Zhang, D. Wu, Z. Zhang, C. Jin, W. Ji, X. Zhang, J. Yuan, and Z. Zhang, “Exploring Atomic Defects in Molybdenum Disulphide Monolayers” Nat. Commun., vol. 6, no. 1, pp. 1–8, 2015.
[143] S. Najmaei, J. Yuan, J. Zhang, P. Ajayan, and J. Lou, “Synthesis and Defect Investigation of Two-Dimensional Molybdenum Disulfide Atomic Layers,” Acc. Chem. Res., vol. 48, no. 1, pp. 31–40, 2015.
[144] F. Li, L. Chen, H. Liu, D. Wang, C. Shi, and H. Pan, “Enhanced N2-Fixation by Engineering the Edges of Two-Dimensional Transition-Metal Disulfides,” J. Phys. Chem. C, vol. 123, no. 36, pp. 22221–22227, 2019.
[145] L. Zhao, R. Zhao, Y. Zhou, X. Wang, X. Chi, Y. Xiong, C. Li, Y. Zhao, H. Wang, Z. Yang, and Y. M. Yan, “Efficient N2 reduction with the VS2 electrocatalyst: identifying the active sites and unraveling the reaction pathway,” J. Mater. Chem. A, vol. 9, no. 44, pp. 24985–24992, 2021.
[146] L. Zhao, Y. Xiong, X. Wang, R.Zhao, X. Chi, Y. Zhou, H. Wang, Z. Yang, and Y. M. Yan, “Shearing Sulfur Edges of VS2 Electrocatalyst Enhances its Nitrogen Reduction Performance,” Small, pp. 2106939, 2022.
[147] F. Li, K. Tu, and Z. Chen, “Versatile electronic properties of VSe2 bulk, few-layers, monolayer, nanoribbons, and nanotubes: A computational exploration,” J. Phys. Chem. C , vol. 118, no. 36, pp. 21264–21274, 2014.
[148] F. W. Ming, H. F. Liang, Y. J. Lei, W. L. Zhang, and H. N. Alshareef, “Solution synthesis of VSe2 nanosheets and their alkali metal ion storage performance,” Nano Energy, vol. 53, pp. 11–16, 2018.
[149] X. Peng, Y. Yan, X. Jin, C. Huang, W. Jin, B. Gao, and P. K. Chu, “Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting,” Nano Energy, vol. 78, pp. 105234, 2020.
[150] W. W. Zhao, B. H. Dong, Z. L. Guo, G. Su, R. J. Gao, W. Wang, and L. X. Cao, “Colloidal synthesis of VSe2 single-layer nanosheets as novel electrocatalysts for the hydrogen evolution reaction,” Chem. Commun., vol. 52, no. 59, pp. 9228–9231, 2016.
[151] Q. Zhu, M. Shao, S. H. Yu, X. Wang, Z. Tang, B. Chen, H. Cheng, Z. Lu, D. Chua, and H. Pan, “One-pot synthesis of Co-doped VSe2 nanosheets for enhanced hydrogen evolution reaction,” ACS Appl. Energy Mater., vol. 2, no. 1, pp. 644–653, 2019.
[152] J. Li, X. D. Yang, Y. Liu, B. L. Huang, R. X. Wu, Z. W. Zhang, B. Zhao, H. F. Ma, W. Q. Dang, Z. Wei, K. Wang, Z. Y. Lin, X. X. Yan, M. Z. Sun, B. Li, X. Q. Pan, J. Luo, G. Y. Zhang, Y. Liu, Y. Huang, X. D. Duan, and X. F. Duan, “General synthesis of two-dimensional van der Waals heterostructure arrays,” Nature, vol. 579, no. 7799, pp. 368–374, 2020.
[153] Z. P. Zhang, J. J. Niu, P. F. Yang, Y. Gong, Q. Q. Ji, J. P. Shi, Q. Y. Fang, S. L. Jiang, H. Li, X. B. Zhou, L. Gu, X. S. Xiao, and Y. F. Zhang, “Van der Waals Epitaxial Growth of 2D Metallic Vanadium Diselenide Single Crystals and their Extra-High Electrical Conductivity,” Adv. Mater., vol. 29, no. 37, pp. 1702359, 2017.
[154] H. Pan, “Metal dichalcogenides monolayers: novel catalysts for electrochemical hydrogen production,” Sci. Rep., vol. 4, no. 1, pp. 1–6, 2014.
[155] J. Fu, R. Ali, C. Mu, Y. Liu, N. Mahmood, W. M. Lau, and X. Jian, “Large-scale preparation of 2D VSe2 through a defect-engineering approach for efficient hydrogen evolution reaction,” Chem. Eng. J., vol. 411, pp. 128494, 2021.
[156] J. M. V. Nsanzimana, Y. Peng, Y. Y. Xu, L. Thia, C. Wang, B. Y. Xia, and X. Wang, “An efficient and earth‐abundant oxygen‐evolving electrocatalyst based on amorphous metal borides,” Adv. Energy Mater., vol. 8, no. 1, pp. 1701475, 2018.
[157] Y. Zhang, X. Chen, Y. Huang, C. Zhang, F. Li, and H. Shu, “The Role of Intrinsic Defects in Electrocatalytic Activity of Monolayer VS2 Basal Planes for the Hydrogen Evolution Reaction,” J. Phys. Chem. C, vol. 121, no. 3, pp. 1530–1536, 2017.
[158] J. Wang, Z. Luo, X. Zhang, X. Zhang, J. Shi, T. Cao, and X. Fan, “Single transition metal atom anchored on VSe2 as electrocatalyst for nitrogen reduction reaction,” Appl. Surf. Sci., vol. 580, pp. 152272, 2022.
[159] Y. Luo, Q. Li, Y. Tian, Y. Liu, and K. Chu, “Amorphization engineered VSe2-x nanosheets with abundant Se-vacancies for enhanced N2 electroreduction,” J. Mater. Chem. A, vol. 10, pp. 1742–1749, 2022.
[160] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., vol. 140, pp. A1133–A1138, 1965.
[161] M. D. Segall, P. J. D. Lindan, M. J. Probert4, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys.: Condens. Matter, vol. 14, no. 11, pp. 2717–2744, 2002.
[162] F. Ercolessi and J. B. Adams, “Interatomic Potentials from First-Principles Calculations: The Force-Matching Method,” Europhys. Lett., vol. 26, no. 8, pp. 583–588, 1994.
[163] J. Tersoff, “Empirical interatomic potential for silicon with improved elastic properties,” Phys. Rev. B, vol. 38, no. 14, pp. 9902–9905, 1988.
[164] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. B, vol. 136, no. 3B, pp. B864–B871, 1964.
[165] D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett., vol. 45, no. 7, pp. 566–569, 1980.
[166] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Phys. Rev. A, vol. 38, pp. 3098–3100, 1988.
[167] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, 1996.
[168] M. Ernzerhof and G. E. Scuseria, “Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional,” J. Chem. Phys., vol. 110, no. 11, pp. 5029–5036, 1999.
[169] G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” J. Phys.: Condens. Matter, vol. 6, no. 40, pp. 8245–8257, 1994.
[170] V. Milman, K. Refson, S. J. Clark, C. J. Pickard, J. R. Yates, S. P. Gao, P. J. Hasnip, M. I. J. Probert, A. Perlov, and M. D. Segall, “Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation,” J. Mol. Struct.: THEOCHEM, vol. 954, pp. 22–35, 2010.
[171] S. B. Patil, H. L. Chou, Y. M. Chen, S. H. Hsieh, C. H. Chen, C. C. Chang, S. R. Li, Y. C. Lee, Y. S. Lin, H. Li, Y. J. Chang, Y, H, Lai, and D. Y. Wang, “Enhanced N2 affinity of 1T-MoS2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance,” J. Mater. Chem. A, vol. 9, no. 2, pp. 1230–1239, 2021.
[172] J. Li, A. Staykov, T. Ishihara, and K. Yoshizawa, “Theoretical study of the decomposition and hydrogenation of H2O2 on Pd and Au@ Pd surfaces: Understanding toward high selectivity of H2O2 synthesis,” J. Phys. Chem. C, vol. 115, no. 15, pp. 7392–7398, 2011.
[173] M. Nugraha, M. C. Tsai, J. Rick, W. N. Su, H. L. Chou, and B.J. Hwang, “DFT study reveals geometric and electronic synergisms of palladium-mercury alloy catalyst used for hydrogen peroxide formation,” Appl. Catal. A, vol. 547, pp. 69–74, 2017.
[174] D. Y. Wang, M. Gong, H. L. Chou, C. J. Pan, H. A. Chen, Y. P. Wu, M. C. Lin, M. Y. Guan, J. Yang, C. W. Chen, Y. L. Wang, B. J. Hwang, C. C. Chen, and H. J. Dai, “Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets–carbon nanotubes for hydrogen evolution reaction,” J. Am. Chem. Soc., vol. 137, no. 4, pp. 1587–1592, 2015.
[175] D. Y. Wang, C. Y. Wei, M. C. Lin, C. J. Pan, H. L. Chou, H. A. Chen, M. Gong, Y. Wu, C. Yuan, M. Angell, Y. J. Hsieh, Y. H. Chen, C.Y. Wen, C. W. Chen, B. J. Hwang, C. C. Chen, and H. Dai, “Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode,” Nat. Commun., vol. 8, no. 1, pp. 1–7, 2017.
[176] P. Rochana, K. Lee, and J. Wilcox, “Nitrogen adsorption, dissociation, and subsurface diffusion on the vanadium (110) surface: a DFT study for the nitrogen-selective catalytic membrane application,” J. Phys. Chem. C, 118(8), 4238-4249, 2014.
[177] S. E. Bae, K. L. Stewart, and A. A. Gewirth, “Nitrate adsorption and reduction on Cu (100) in acidic solution,” J. Am. Chem. Soc., vol. 129, no. 33, pp. 10171–10180, 2007.
[178] Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D. H. Nam, C. S. Tan, Y. Ding, J. Wu, Y. Lum, C. T. Dinh, D. Sinton, G. Zheng, and E. H. Sargent, “Enhanced nitrate-to-ammonia activity on copper–nickel alloys via tuning of intermediate adsorption,” J. Am. Chem. Soc., vol. 142, no. 12, pp. 5702–5708, 2020.
[179] G. F. Chen, Y. Yuan, H. Jiang, S. Y. Ren, L. X. Ding, L. Ma, T. Wu, J. Lu, and H. Wang, “Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst,” Nat. Energy, vol. 5, no. 8, pp. 605–613, 2020.
[180] Y. Wang, W. Zhou, R. Jia, Y. Yu, and B. Zhang, “Unveiling the activity origin of a copper‐based electrocatalyst for selective nitrate reduction to ammonia,” Angew. Chem. Int. Ed. Engl., vol. 59, no. 13, pp. 5350–5354, 2020.
[181] Y. Wang, S. Shu, M. Peng, L. Hu, X. Lv, Y. Shen, H. Gong, and G. Jiang, “Dual-site electrocatalytic nitrate reduction to ammonia on oxygen vacancy-enriched and Pd-decorated MnO2 nanosheets,” Nanoscale, vol. 13, no. 41, pp. 17504–17511, 2021.
[182] J. X. Liu, D. Richards, N. Singh, and B. R. Goldsmith, “Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals,” ACS Catal., vol. 9, no. 8, pp. 7052–7064, 2019.
[183] L. F. Greenlee, J. N. Renner, and S. L. Foster, “The use of controls for consistent and accurate measurements of electrocatalytic ammonia synthesis from dinitrogen,” ACS Catal., vol. 8, no. 9, pp. 7820–7827, 2018.
[184] J. H. Montoya, C. Tsai, A. Vojvodic, and J. K. Nørskov, “The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations,” ChemSusChem, vol. 8, no. 13, pp. 2180–2186, 2015.
[185] C.K. Choi, G.H. Gu, J. Noh, H.S. Park, and Y.S. Jung, “Understanding potential-dependent competition between electrocatalytic dinitrogen and proton reduction reactions,” Nat. Commun., vol. 12, no. 1, pp. 1–11, 2021.
[186] L. Hu, Z. Xing, and X. Feng, “Understanding the electrocatalytic interface for ambient ammonia synthesis,” ACS Energy Lett., vol. 5, no. 2, pp. 430–436, 2020.
[187] Á. B. Höskuldsson, Y. Abghoui, A. B. Gunnarsdóttir, and E. Skúlason, “Computational screening of rutile oxides for electrochemical ammonia formation,” ACS Sustainable Chem. Eng., vol. 5, no. 11, pp. 10327–10333, 2017.
[188] A. J. Appleby, J. H. Zagal, “Free energy relationships in electrochemistry: a history that started in 1935,” J. Solid State Electrochem., vol. 15, no. 7, pp. 1811–1832, 2011.
[189] A. Jain, M. Bar Sadan, and A. Ramasubramaniam, “Identifying a New Pathway for Nitrogen Reduction Reaction on Fe-Doped MoS2 by the Coadsorption of Hydrogen and N2,” J. Phys. Chem. C, vol. 125, no. 36, pp. 19980–19990, 2021.
[190] K. S. Exner and H. Over, “Kinetics of electrocatalytic reactions from first-principles: a critical comparison with the ab initio thermodynamics approach,” Acc. Chem. Res., vol. 50, no. 5, pp. 1240–1247, 2017.
[191] R. A. van Santen, M. Neurock, and S. G. Shetty, “Reactivity theory of transition-metal surfaces: a Brønsted−Evans−Polanyi linear activation energy−free-energy analysis,” Chem. Rev., vol. 110, no. 4, pp. 2005–2048, 2009.
[192] K. J. Laidler, “transition-state theory,” Encyclopedia Britannica, 2019. Retrieved May 13, 2022, from https://www.britannica.com/science/transition-state-theory
[193] A. J. Morris, R. J. Nicholls, C. J. Pickard, and J. R. Yates, “OptaDOS: A tool for obtaining density of states, core-level and optical spectra from electronic structure codes,” Comput. Phys. Commun., vol. 185, no. 5, pp. 1477–1485, 2014.
[194] N. Shanthi and D. D. Sarma, “Electronic structure of electron doped SrTiO3: SrTiO3− δ and Sr1− x LaxTiO3,” Phys. Rev. B, vol. 57, no. 4, pp. 2153–2158, 1998.
[195] H. Chang, J. D. Lee, S. M. Lee, and Y. H. Lee, “Adsorption of NH3 and NO2 molecules on carbon nanotubes,” Appl. Phys. Lett., vol. 79, no. 23, pp. 3863–3865, 2001.
[196] V. Kumar and S. K. Tripathy, “First-principle calculations of the electronic, optical and elastic properties of ZnSiP2 semiconductor,” J. Alloys Compd., vol. 582, pp. 101–107, 2014.
[197] J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, “Trends in the exchange current for hydrogen evolution,” J. Electrochem. Soc., vol. 152, no. 3, pp. J23–J26, 2005.
[198] D. Hricova, R. Stephan, and C. Zweifel, “Electrolyzed water and its application in the food industry,” J Food Prot., vol. 71, pp. 1934–1947, 2008.
[199] C. F. Dickens, C. Kirk, and J. K. Nørskov, “Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: beyond the limiting potential volcano,” J. Phys. Chem. C, vol. 123, no. 31, pp. 18960–18977, 2019.
[200] L. Ju, X. Tan, X. Mao, Y. Gu, S. Smith, A. Du, Z. Chen, C. Chen, and L. Kou, “Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer,” Nat. Commun., vol. 12, no. 1, pp. 1–10, 2021.
[201] H. Niu, X. Wang, C. Shao, Z. Zhang, and Y. Guo, “Computational screening single-atom catalysts supported on g-CN for N2 reduction: high activity and selectivity,” ACS Sustainable Chem. Eng., vol. 8, no. 36, pp. 13749–13758, 2020.
[202] W. Zhao, L. Zhang, Q. Luo, Z. Hu, W. Zhang, S. Smith, and J. Yang, “Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia,” ACS Catal., vol. 9, no. 4, pp. 3419–3425, 2019.
[203] D. Kim, C. Xie, N. Becknell, Y. Yu, M. Karamad, K. Chan, E. J. Crumlin, J. K. Nørskov, and P. Yang, “Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles,” J. Am. Chem. Soc., vol. 139, no. 24, pp. 8329–8336, 2017.
[204] F. M. Enujekwu, Y. Zhang, C. I. Ezeh, H. Zhao, M. Xu, H. Do, and T. Wu, “Insights into the effects of single Mo vacancy sites on the adsorption and dissociation of CO2 and H2O over the tertiary N-doped MoS2 monolayers,” Appl. Surf. Sci., vol. 577, pp. 151908, 2022.
[205] I. Matanovic, K. Leung, S. J. Percival, J. E. Park, P. Lu, P. Atanassov, and S. S. Chou, “Towards defect engineering in hexagonal MoS2 nanosheets for tuning hydrogen evolution and nitrogen reduction reactions,” Appl. Mater. Today, vol. 21, pp. 100812, 2020.
[206] K. K. Ghuman, S. Yadav, and C. V. Singh, “Adsorption and dissociation of H2O on monolayered MoS2 edges: Energetics and mechanism from ab initio simulations,” J. Phys. Chem. C, vol. 119, no. 12, pp. 6518–6529, 2015.
[207] J. J. Mortensen, L. B. Hansen, B. Hammer, and J. K. Nørskov, “Nitrogen Adsorption and Dissociation on Fe (111),” J. Catal., vol. 182, no. 2, pp. 479– 488, 1999.
[208] S. B. Patil, T. R. Liu, H. L. Chou, Y. B. Huang, C. C. Chang, Y. C. Chen, Y. S. Lin, H. Li, Y. C. Lee, Y. J. Chang, Y. H. Lai, C. Y. Wen, and D. Y. Wang, “Electrocatalytic reduction of NO3– to ultrapure ammonia on 200 facet dominant Cu nanodendrites with high conversion faradaic efficiency,” J. Phys. Chem. Lett., vol. 12, no. 33, pp. 8121–8128, 2021.
[209] H. L. Chou and J. Rick, “Investigation of CO and OH adsorption and oxidation in the presence of cocatalytic ruthenium ions on the Pt (111) surface,” Catal Commun., vol. 162, pp. 106400, 2022.

無法下載圖示 全文公開日期 2027/08/09 (校內網路)
全文公開日期 2027/08/09 (校外網路)
全文公開日期 2027/08/09 (國家圖書館:臺灣博碩士論文系統)
QR CODE