簡易檢索 / 詳目顯示

研究生: 林享德
Xiang-De Lin
論文名稱: 過渡金屬摻雜二氧化鈦修飾鎳鐵層狀氫氧化物觸媒於鹼性氧氣析出反應之研究
Study on transition-metal-doped TiO2 decorated NiFe layered double hydroxide catalyst in alkaline oxygen evolution reaction
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 王丞浩
Chen-Hao Wang
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 179
中文關鍵詞: 氧氣析出反應水分解二氧化鈦摻雜過渡金屬高穩定性
外文關鍵詞: Oxygen evolution reaction, Water electrolysis, TiO2, Doping, Transition metal, High stability
相關次數: 點閱:233下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究的目的為開發非碳(或氧化物)的觸媒並應用於氧氣析出反應,本研究首先使用不同過渡金屬摻雜的TiO2作為氧氣析出反應的觸媒。在材料的選擇上取代傳統用碳當載體,因為碳在高電位的操作下容易被腐蝕進而使觸媒脫落而失去活性,相反的,TiO2在強鹼且高電位的環境中能夠維持穩定不易被氧化,以TiO2取代碳當載體後改善載體腐蝕的問題。但是TiO2本身並不具有氧氣析出反應的催化活性,為了增加氧氣析出反應之催化活性,我們將不同的3d過渡金屬離子摻雜進入TiO2,一方面期望改善二氧化鈦導電性,另一方面希望提升氧氣析出反應的催化活性。
本實驗選擇Ni, Co, Fe以及Mn離子為單摻雜TiO2的摻雜物,而(Ni, Fe)為雙摻雜的摻雜物,經過電化學活性量測後發現,(Ni, Fe)雙摻雜的TiO2氧氣析出反應的催化活性最好,因此本實驗選擇(Ni, Fe)雙摻雜的TiO2為改質的目標,進行對(Ni, Fe)雙摻雜的TiO2更深入的研究與探討。
改質的方向大略分為提升活性點催化活性與增加活性點數目兩大類,本實驗初期嘗試改變組成以獲得最好的比例,經過測試之後發現Ni:Fe莫耳比例為3:1時有較好的催化活性,於是進行Ni:Fe = 6:2、3:1、1.5:0.5之間的活性比較,經過電化學活性測試後發現Ni:Fe = 6:2時的氧氣析出催化效能最好,於是後續皆會以Ni:Fe = 6:2的比例為基礎進行不同方式的改質,期望能更進一步增強觸媒的氧氣析出催化能力。
改質的方式為添加長鏈狀陰離子、氫氣處理以及使用二次水熱的方式成長觸媒,經過改質後,本實驗合成之觸媒NiFe LDH/TiNiFe在電流密度10 mA/cm2 時所需的電位對比純NiFe LDH少10 mV,而穩定性則是大幅優於純NiFe LDH,經過48小時的定電流測試發現觸媒活性並不會降低,成功改善活性以及穩定性的問題。

關鍵詞: 氧氣析出反應、水分解、二氧化鈦、摻雜、過渡金屬、高穩定性


In this work, 3d transition metal doped TiO2 was synthesized and used a catalyst for alkaline oxygen evolution reaction. Commercial catalyst usually uses carbon as support such as Ir/C and Ru/C. But during oxygen evolution reaction, carbon will be corroded seriously. So, catalyst will detach from carbon support cause efficiency of catalyst to decay very quickly. In order to overcome these problems, we develop TiO2 as a support because TiO2 is a very durable material in high potential region and high concentration alkaline electrolyte. However, TiO2 is not a good catalyst for oxygen evolution reaction and suffer from its poor conductivity. To solve these drawbacks, we synthesized different 3d transition metal doping TiO2 in this work. After electrochemical tests, we choose (Ni, Fe) dual doped TiO2 was chosen because of its potential for oxygen evolution reaction.
First of all, different different doping compositions of Ni and Fe were invesitaged, and it was found that Ni:Fe in molar ratio 3:1 showed the best oxygen evolution reaction performance. Next, different doping amounts of Ni to Fe, from 6:2, 3:1 to 1.5:0.5 were also evaluated, where Ni:Fe in 6:2 was the best composition for alkaline oxygen evoution.
Futhermore, we modified catalyst by adding long chain anion, hydrogen treatment and loading NiFe LDH on (Ni, Fe) dual doped TiO2. Finally, NiFe/TiNiFe perform better oxygen evolution reaction than pure NiFe LDH. At the current density reach 10 mA/cm2, the required potential of NiFe/TiNiFe was 10 mV less than for pure NiFe LDH. After 2-days chronopotentiometric stability test, NiFe/TiNiFe showed almost no decay during reaction and is more superior than NiFe LDH. Our work successfully solves activity and stability issue at the same time by an excessive dual doping approach.

Keyword: Oxygen evolution reaction, Water electrolysis, TiO2, Doping, Transition metal, High stability.

目錄 摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XX 第一章 緒論 1 1.1 前言 1 1.2 水電解 2 1.2.1 水電解應用 3 1.2.2 水電解困境 4 1.3 研究動機與目的 5 第二章 文獻回顧 9 2.1 氧氣電催化反應 9 2.2 碳載體觸媒開發 12 2.3 非碳觸媒載體開發 13 2.3.1二氧化鈦(TiO2) 13 2.3.2 TiO2摻雜金屬氧化物之載體開發 15 2.4 層狀複金屬氫氧化物 (Layer double hydroxide,LDH) 17 2.5 鎳鐵層狀氫氧化物應用於氧氣析出反應 (NiFe-LDH) 19 第三章 實驗設備與方法 27 3.1 實驗設備 27 3.2 實驗藥品 28 3.3 實驗步驟 29 3.3.1 以水熱法合成過渡金屬摻雜的二氧化鈦 30 3.3.2 以修飾水熱法合成過渡金屬摻雜的二氧化鈦 31 3.3.3 以水熱法一步合成TiNiFe複合物 33 3.3.4 以長鏈狀陰離子修飾水熱法一步合成TiNiFe複合物 35 3.3.5 合成NiFe LDH負載於(Ni, Fe)雙摻雜TiO2 36 3.3.6 氫氣處理步驟 37 3.3.7 樣品清單與命名 38 3.3.8 電化學漿料調配與量測方法 39 3.4 儀器原理與材料鑑定 40 3.4.1 掃描式電子顯微鏡 (SEM) 40 3.4.2 能量分散光譜儀 (EDX) 44 3.4.3 X射線光譜儀 (XRD) 45 3.4.4 表面積測定儀 48 3.4.5 X光吸收光譜原理 50 3.4.6 電化學原理 60 第四章 結果 68 4.1 過渡金屬摻雜之TiO2特性分析 68 4.1.1 材料晶相之分析(XRD) 68 4.1.2 表面型態分析(SEM) 70 4.1.3 材料組成分析(EDX) 71 4.1.4 氧氣析出反應之電化學活性量測 72 4.2 修飾水熱法合成過渡金屬摻雜之TiO2特性分析 75 4.2.1 觸媒晶相之分析(XRD) 77 4.2.2 觸媒表面分析(SEM) 79 4.2.3 觸媒組成分析(EDX) 81 4.2.4 氧氣析出反應之電化學活性量測 82 4.3以水熱法一步合成TiNiFe複合物之特性分析 83 4.3.1 觸媒晶相之分析(XRD) 84 4.3.2 觸媒表面型態分析(SEM) 90 4.3.3 觸媒組成分析(EDX) 93 4.3.4 X光吸收光譜之分析(XAS) 94 4.3.5 氧氣析出反應之電化學活性量測 106 4.4 NiFe LDH負載於(Ni, Fe)雙摻雜TiO2之特性分析 114 4.4.1 NiFe LDH/TiNiFe晶相之分析 115 4.4.2 NiFe LDH/TiNiFe表面型態分析 116 4.4.3 X光吸收光譜之分析 117 4.4.4 NiFe LDH/TiNiFe電化學效能分析 120 第五章 綜合討論 134 5.1 合成方式對觸媒結構的影響 134 5.2 合成方式對觸媒表面形貌的影響 136 5.3 以X光吸收光譜比較合成方式對觸媒的影響 138 5.4 合成方式對觸媒電化學的影響 142 第六章 結論 144 6.1 修飾水熱合成過渡金屬摻雜之TiO2 144 6.2 以水熱法一步合成TiNiFe複合物 145 6.3 NiFe LDH負載於(Ni, Fe)雙摻雜TiO2 145 第七章 未來展望 148 第八章 參考文獻 150

1. Lee, J., B. Jeong, and J.D. Ocon, Oxygen electrocatalysis in chemical energy conversion and storage technologies. Current Applied Physics, 2013. 13(2): p. 309.
2. Carmo., M., D. L.Fritz., J. Mergel., and D. Stolten., A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013. 38(12): p. 4901.
3. Suen, N.T., S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, and H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev, 2017. 46(2): p. 337.
4. Metal price chart 2017-2018; Available from: http://www.infomine.com/investment/.
5. Suntivich, J., K.J. May, H.A. Gasteiger, J.B. Goodenough, and Y. Shao-Horn, A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science, 2011. 334(6061): p. 1383.
6. Liu, W., Y. Zhao, R. Zhang, Y. Li, E.J. Lavernia, and Q. Jiang, Oxidation of CO catalyzed by a Cu cluster: influence of an electric field. Chemphyschem, 2009. 10(18): p. 3295.
7. Zhang, P., X.F. Chen, J.S. Lian, and Q. Jiang, Structural Selectivity of CO Oxidation on Fe/N/C Catalysts. The Journal of Physical Chemistry C, 2012. 116(33): p. 17572.
8. Chen, G., S.R. Bare, and T.E. Mallouk, Journal of The Electrochemical Society, 2002. 149: p. A1092.
9. Ross, P.N. and H. Sokol, Journal of The Electrochemical Society, 1984. 131: p. 1742.
10. Ma, X., H. Meng, M. Cai, and P.K. Shen, Journal of American Chemical Society, 2012. 134: p. 1954.
11. Zhao, Y., X. Jia, G. Chen, L. Shang, G. I.N., Waterhouse, L.-Z. Wu, C.-H. Tung, D. O'Hare, and T. Zhang, J. Am. Chem. Soc., 2016.
12. Sharma, S. and B.G. Pollet, Journal of Power Source, 2012. 208: p. 96.
13. Garcia, B.L., R. Fuentes, and J.W. Weidner, Low-Temperature Synthesis of a PtRu / Nb0.1Ti0.9O2 Electrocatalyst for Methanol Oxidation. Electrochemical and Solid-State Letters, 2007. 10(7): p. B108.
14. Gojković, S.L., N.V. Krstajić, B.M. Babić, and V.R. Radmilović, Nb-doped TiO2 as a support of Pt and Pt-Ru anode catalyst for PEMFCs. Journal of Electroanalytical Chemistry, 2010. 639(1-2): p. 161.
15. Park, K.-W. and K.-S. Seol, Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochemistry Communications, 2007. 9(9): p. 2256.
16. Chattopadhyay, J., R. Srivastava, and P.K. Strivastava, Ni-doped TiO2 hollow spheres as electrocatalysts in water electrolysis for hydroden and oxygen production. Journal of Applied Electrochemistry, 2012. 43(3): p. 279.
17. Sasaki, K., L. Zhang, and R.R. Adzic, Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys Chem Chem Phys, 2008. 10(1): p. 159.
18. Chevallier, L., et al., Mesoporous nanostructured Nb-doped titanium dioxide microsphere catalyst supports for PEM fuel cell electrodes. ACS applied materials and interfaces, 2012. 4(3): p. 1752.
19. Ho, V.T.T., C.-J. Pan, J. Rick, W.-N. Su, and B.-J. Hwang, Nanostructured Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction J. Am. Chem. Soc., 2011. 133: p. 11716.
20. Yin, H. and Z. Tang, Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chem Soc Rev, 2016. 45(18): p. 4873.
21. Fan, G., F. Li, D.G. Evans, and X. Duan, Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev, 2014. 43(20): p. 7040.
22. Xu, Z.P., G. Stevenson, C.Q. Lu, and G.Q. Lu, Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions. J. Phys. Chem. B, 2006. 110, 16923-16929.
23. Gong, M., Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai, An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc, 2013. 135(23): p. 8452.
24. Lu., Z., W. Xu., W. Zhu., Q. Yang., X. Lei., J. Liu., Y. Li., X. Sun., and X. Duan., Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun., 2014. 50: p. 6479.
25. Song, F. and X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. NATURE COMMUNICATIONS, 2014.
26. Tsai, M.-C., T.-T. Nguyen, N.G. Akalework, C.-J. Pan, J. Rick, Y.-F. Liao, W.-N. Su, and B.-J. Hwang, Interplay between Molybdenum Dopant and Oxygen Vacancies in a TiO2 Support Enhances the Oxygen Reduction Reaction ACS Catal, 2016. 6: p. 6551−6559.

QR CODE