簡易檢索 / 詳目顯示

研究生: 楊喻晴
Yu-Ching Yang
論文名稱: 結合DFT和AIMD方法研究Argyrodite型固態電解質Li6PS5Cl:異價陽離子取代對導離度和水氣穩定性的影響
A Combined DFT and AIMD Study on Argyrodite Solid Electrolyte Li6PS5Cl: Effects of Aliovalent Cation Substitutions on Ionic Conductivity and Moisture Stability
指導教授: 陳秀美
Hsiu-Mei Chen
江志強
Jyh-Chiang Jiang
口試委員: 陳秀美
Hsiu-Mei Chen
江志強
Jyh-Chiang Jiang
黃炳照
Bing-Joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 184
中文關鍵詞: 固態電解質導離度水氣穩定性
外文關鍵詞: Li6PS5Cl
相關次數: 點閱:160下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了解決當今商用鋰離子電池的安全問題,使用固態電解質的固態鋰金屬電池被視為一種有效的解決方案。其中硫化物固態電解質Li6PS5Cl (LPSC)因具有良好的鋰離子導離度和延展性而受到廣泛關注。然而,LPSC在導離度及穩定性方面仍面臨相當大的挑戰。首先,LPSC的鋰離子導離度仍低於商用液態電解質,另外,LPSC在與水反應後會產生有毒氣體硫化氫。因此,本研究使用密度泛函理論 (DFT) 和第一原理分子動力學 (AIMD) 模擬,探討了LPSC中不同異價陽離子取代磷並考慮氯電荷平衡(去除氯)或鋰電荷平衡 (添加鋰) 的兩種方式,比較鋰離子導離度的差異。計算結果表明,在氯電荷平衡方面,Li6P0.75La0.25S5Cl0.5與 Li6P0.75Y0.25S5Cl0.5分別展現出比LPSC 高11倍 (2.608 mS cm-1) 及10倍 (2.337mS cm-1)的鋰離子導離度;而在鋰電荷平衡方面,Li6.25P0.75Ti0.25S5Cl 表現出最高的鋰離子導離度(5.510 mS cm-1),為LPSC的23倍。另外,我們也透過DFT計算來探討LPSC和Ti-LPSC表面的水解反應機制。結果表明,Ti-LPSC在速率決定步驟上的能障比LPSC大,因而擁有了更佳的水氣穩定性。由上述結果可知,在LPSC上進行鈦原子取代並透過鋰離子進行電荷平衡,表現出比LPSC更高的鋰離子導離度與水氣穩定性,是個非常具有發展潛力的新型固態電解質材料。


The use of solid-state electrolytes (SSEs) in solid-state lithium metal batteries has been recognized as an effective solution for addressing the safety concerns associated with current commercially available lithium-ion batteries. Sulfide-based SSEs, specifically Li6PS5Cl (LPSC), have received considerable attention among the various SSE types available due to their excellent Li+ ionic conductivity and impressive flexibility. However, there are two major issues with LPSC should be addressed. First, the Li+ ionic conductivity of LPSC is lower than that of liquid electrolytes. Second, the moisture stability of LPSC is a concern because it reacts with water (H2O) and forms the toxic gas hydrogen sulfide (H2S). Therefore, this study uses density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations to explore the Li+ ionic conductivities of different aliovalent cations substituted for phosphorus on LPSC bulk. Here while substituting the aliovalent cations, the effects of charge balance by either removing chlorine (Cl-charge balance) or adding lithium atoms (Li-charge balance) on Li+ ionic conductivities are studied. The results show that the Li6P0.75La0.25S5Cl0.5 system has the highest Li+ ionic conductivity of 2.608 mS cm-1 in the Cl-charge balance, which is eleven times higher than the pristine LPSC. Li6P0.75Y0.25S5Cl0.5 also has a high Li+ ionic conductivity of 2.337 mS cm-1, which is ten times greater than pristine LPSC. In terms of Li-charge balance, Li6.25P0.75Ti0.25S5Cl demonstrates the highest Li+ ionic conductivity of 5.510 mS cm-1, which is twenty-three times greater than the pristine LPSC. Furthermore, DFT calculations were employed to investigate the hydrolysis reaction mechanism of both pristine LPSC and Ti-LPSC surfaces. The results revealed that after doping with titanium atoms, the activation barrier of the rate-determining step is higher compared to pristine LPSC, thereby enhancing the moisture stability of the material. Based on these theoretical results, it is found that the Li-Charge balance with the titanium atom substitution on LPSC has not only high Li+ ionic conductivity but also improved moisture stability than pristine LPSC.

Abstract I 摘要 III 致謝 IV Contents V List of Figures VIII List of Tables XV Chapter 1. Introduction 1 1.1 Lithium-ion battery 1 1.2 The working principle of lithium-ion battery 7 1.3 Anode 9 1.3.1 Graphite 9 1.3.2 Silicon 11 1.3.3 Lithium metal 12 1.4 Cathode 13 1.5 Electrolyte 15 1.5.1 Oxide-based SSEs 19 1.5.2 Sulfide-based SSEs 30 1.5.3 Halide-based SSE 39 1.6 Present Study 43 Chapter 2. Theoretical Methodology 45 2.1 Density Functional Theory calculations 45 2.1 Climbing image nudged elastic band (CI-NEB) 46 2.2 Ab initio molecular dynamics (AIMD) simulation 48 2.3 Bulk and surface model 51 Chapter 3. Effects of Cation Substitutions on Li-Ionic Conductivity 57 3.1 Cl-Charge Balance 58 3.1.1 Screening parameters 58 3.1.2 Ionic conductivity 62 3.1.3 Bader charge Analysis 67 3.2 Li-Charge Balance 71 3.2.1 Screening parameters 71 3.2.2 Bader charge Analysis 73 3.2.3 Ionic conductivity 76 3.3 Conclusions 78 Chapter 4. Moisture stability 80 4.1 Hydrolysis Reaction of pristine LPSC (111) Surface 80 4.1.1 H2O molecule adsorbed on LPSC (111) surface 80 4.1.2 Hydrolysis reaction of the water monomer on the LPSC (111) surface 85 4.1.3 Hydrolysis reaction of the water dimer on the LPSC (111) surface 91 4.2 Hydrolysis Reaction of pristine LPSC (220) Surface 99 4.2.1 H2O molecule adsorbed on LPSC (220) surface 99 4.2.2 Hydrolysis reaction of the water monomer on the LPSC (220) surface 104 4.2.3 Hydrolysis reaction of water dimer on the LPSC (220) surface 110 4.3 Hydrolysis Reaction of Ti-LPSC (220) Surface 121 4.3.1 Surface model of the Ti-LPSC (220) 121 4.3.2 H2O molecule adsorbed on Ti-LPSC (220) surface 124 4.3.3 Hydrolysis reaction of water dimer on Ti-LPSC (220) surface 128 4.4 Conclusions 143 Chapter 5. Summary 145 Reference 147 Appendix 160

1. Project, O. W. i. D. b. o. t. G. C., Ourworldindata.Org/CO2-and-Greenhouse-Emissions • cc By. 2022.
2. Renewable Capacity Statistics The International Renewable Energy Agency (IRENA) 2023, ISBN: 978-92-9260-525-4.
3. Luo, X.; Wang, J.; Dooner, M.; Clarke, J., Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation. Appl. Energy 2015, 137, 511-536.
4. Hagen, M.; Hanselmann, D.; Ahlbrecht, K.; Maça, R.; Gerber, D.; Tübke, J., Lithium–Sulfur Cells: The Gap between the State‐of‐the‐Art and the Requirements for High Energy Battery Cells. Adv. Energy Mater. 2015, 5, 1401986.
5. Chung, S. H.; Manthiram, A., Current Status and Future Prospects of Metal–Sulfur Batteries. Adv Mater 2019, 31, 1901125.
6. Wu, J.; Zhang, X.; Ju, Z.; Wang, L.; Hui, Z.; Mayilvahanan, K.; Takeuchi, K. J.; Marschilok, A. C.; West, A. C.; Takeuchi, E. S., From Fundamental Understanding to Engineering Design of High‐Performance Thick Electrodes for Scalable Energy‐Storage Systems. Adv Mater 2021, 33, 2101275.
7. Li, X.; Zhang, Y.; Wang, S.; Liu, Y.; Ding, Y.; He, G.; Zhang, N.; Yu, G., Hierarchically Porous C/Fe3C Membranes with Fast Ion-Transporting Channels and Polysulfide-Trapping Networks for High-Areal-Capacity Li–S Batteries. Nano Letters 2019, 20, 701-708.
8. Tarascon, J.-M.; Armand, M., Issues and Challenges Facing Rechargeable Lithium Batteries. nature 2001, 414, 359-367.
9. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-Ion Battery Materials: Present and Future. Mater Today 2015, 18, 252-264.
10. Jaguemont, J.; Boulon, L.; Dubé, Y., A Comprehensive Review of Lithium-Ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures. Appl. Energy 2016, 164, 99-114.
11. Aneke, M.; Wang, M., Energy Storage Technologies and Real Life Applications–a State of the Art Review. Appl. Energy 2016, 179, 350-377.
12. Ozawa, K., Lithium-Ion Rechargeable Batteries with LiCoO2 and Carbon Electrodes: The LiCoO2/C System. Solid State Ion. 1994, 69, 212-221.
13. Basu, S.; Hariharan, K. S.; Kolake, S. M.; Song, T.; Sohn, D. K.; Yeo, T., Coupled Electrochemical Thermal Modelling of a Novel Li-Ion Battery Pack Thermal Management System. Appl. Energy 2016, 181, 1-13.
14. Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N., A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83-99.
15. Meng, X.; Xu, Y.; Cao, H.; Lin, X.; Ning, P.; Zhang, Y.; Garcia, Y. G.; Sun, Z., Internal Failure of Anode Materials for Lithium Batteries—a Critical Review. Green Energy Environ. 2020, 5, 22-36.
16. Weaving, J.; Coowar, F.; Teagle, D.; Cullen, J.; Dass, V.; Bindin, P.; Green, R.; Macklin, W., Development of High Energy Density Li-Ion Batteries Based on Lini1− X− Ycoxalyo2. J. Power Sources 2001, 97, 733-735.
17. Kamali, A. R.; Fray, D. J., Review on Carbon and Silicon Based Materials as Anode Materials for Lithium Ion Batteries. J. New Mater. Electrochem. Syst 2010, 13, 147-160.
18. Kambe, N.; Dresselhaus, M.; Dresselhaus, G.; Basu, S.; McGhie, A.; Fischer, J., Intercalate Ordering in First Stage Graphite-Lithium. Mater. Sci. Eng. 1979, 40, 1-4.
19. Ma, D.; Cao, Z.; Hu, A., Si-Based Anode Materials for Li-Ion Batteries: A Mini Review. Nano-Micro Letters 2014, 6, 347-358.
20. Li, F.-S.; Wu, Y.-S.; Chou, J.; Wu, N.-L., A Dimensionally Stable and Fast-Discharging Graphite–Silicon Composite Li-Ion Battery Anode Enabled by Electrostatically Self-Assembled Multifunctional Polymer-Blend Coating. Chem comm 2015, 51, 8429-8431.
21. Choi, S. H.; Nam, G.; Chae, S.; Kim, D.; Kim, N.; Kim, W. S.; Ma, J.; Sung, J.; Han, S. M.; Ko, M., Robust Pitch on Silicon Nanolayer–Embedded Graphite for Suppressing Undesirable Volume Expansion. Adv. Energy Mater. 2019, 9, 1803121.
22. Ko, M.; Chae, S.; Ma, J.; Kim, N.; Lee, H.-W.; Cui, Y.; Cho, J., Scalable Synthesis of Silicon-Nanolayer-Embedded Graphite for High-Energy Lithium-Ion Batteries. Nat. Energy. 2016, 1, 1-8.
23. Li, J.; Wang, J.; Yang, J.; Ma, X.; Lu, S., Scalable Synthesis of a Novel Structured Graphite/Silicon/Pyrolyzed-Carbon Composite as Anode Material for High-Performance Lithium-Ion Batteries. J. Alloys Compd. 2016, 688, 1072-1079.
24. Hatchard, T.; Dahn, J., In Situ Xrd and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon. J. Electrochem. Soc. 2004, 151, A838.
25. Chandrasekaran, R.; Magasinski, A.; Yushin, G.; Fuller, T. F., Analysis of Lithium Insertion/Deinsertion in a Silicon Electrode Particle at Room Temperature. J. Electrochem. Soc. 2010, 157, A1139.
26. Obrovac, M.; Krause, L., Reversible Cycling of Crystalline Silicon Powder. J. Electrochem. Soc. 2006, 154, A103.
27. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L., Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes through Solid–Electrolyte Interphase Control. Nat. Nanotechnol. 2012, 7, 310-315.
28. Cui, L.-F.; Hu, L.; Wu, H.; Choi, J. W.; Cui, Y., Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode. J. Electrochem. Soc. 2011, 158, A592.
29. Cui, L.-F.; Ruffo, R.; Chan, C. K.; Peng, H.; Cui, Y., Crystalline-Amorphous Core− Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano letters 2009, 9, 491-495.
30. Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J., Silicon Nanotube Battery Anodes. Nano letters 2009, 9, 3844-3847.
31. Cui, L.-F.; Hu, L.; Choi, J. W.; Cui, Y., Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries. ACS Nano 2010, 4, 3671-3678.
32. McDowell, M. T.; Ryu, I.; Lee, S. W.; Wang, C.; Nix, W. D.; Cui, Y., Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with in Situ Transmission Electron Microscopy. Adv Mater 2012, 24, 6034-6041.
33. Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G., High-Performance Lithium-Ion Anodes Using a Hierarchical Bottom-up Approach. Nat. Mater. 2010, 9, 353-358.
34. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G., High Rate and Stable Cycling of Lithium Metal Anode. Nat. Commun 2015, 6, 6362.
35. Shen, K.; Wang, Z.; Bi, X.; Ying, Y.; Zhang, D.; Jin, C.; Hou, G.; Cao, H.; Wu, L.; Zheng, G., Magnetic Field–Suppressed Lithium Dendrite Growth for Stable Lithium‐Metal Batteries. Adv. Energy Mater. 2019, 9, 1900260.
36. Jin, C.; Sheng, O.; Luo, J.; Yuan, H.; Fang, C.; Zhang, W.; Huang, H.; Gan, Y.; Xia, Y.; Liang, C., 3d Lithium Metal Embedded within Lithiophilic Porous Matrix for Stable Lithium Metal Batteries. Nano Energy 2017, 37, 177-186.
37. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium Metal Anodes for Rechargeable Batteries. Energy Environ. Sci. 2014, 7, 513-537.
38. Lin, D.; Liu, Y.; Cui, Y., Reviving the Lithium Metal Anode for High-Energy Batteries. Nat. Nanotechnol. 2017, 12, 194-206.
39. Whittingham, M. S., Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104, 4271-4302.
40. Salgado, R. M.; Danzi, F.; Oliveira, J. E.; El-Azab, A.; Camanho, P. P.; Braga, M. H., The Latest Trends in Electric Vehicles Batteries. Molecules 2021, 26, 3188.
41. Von Cresce, A.; Xu, K., Electrolyte Additive in Support of 5 V Li Ion Chemistry. J. Electrochem. Soc. 2011, 158, A337.
42. Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y., Progress in Electrolytes for Rechargeable Li-Based Batteries and Beyond. Green Energy Environ. 2016, 1, 18-42.
43. Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y., Materials for Lithium-Ion Battery Safety. Sci. Adv. 2018, 4, eaas9820.
44. Doughty, D. H.; Roth, E. P., A General Discussion of Li Ion Battery Safety. Electrochem. Soc. 2012, 21, 37.
45. Li, M.; Hicks, R. P.; Chen, Z.; Luo, C.; Guo, J.; Wang, C.; Xu, Y., Electrolytes in Organic Batteries. Chem. Rev. 2023, 123, 1712-1773.
46. Chen, X.; Guan, Z.; Chu, F.; Xue, Z.; Wu, F.; Yu, Y., Air‐Stable Inorganic Solid‐State Electrolytes for High Energy Density Lithium Batteries: Challenges, Strategies, and Prospects. InfoMat 2022, 4, e12248.
47. Han, X.; Gong, Y.; Fu, K.; He, X.; Hitz, G. T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G., Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries. Nat. Mater. 2017, 16, 572-579.
48. Hong, H.-P., Crystal Structures and Crystal Chemistry in the System Na1+XZr2SixP3−XO12. Mater. Res. Bull. 1976, 11, 173-182.
49. Aono, H.; Imanaka, N.; Adachi, G.-y., High Li+ Conducting Ceramics. Acc. Chem. Res. 1994, 27, 265-270.
50. Xu, X.; Wen, Z.; Wu, J.; Yang, X., Preparation and Electrical Properties of Nasicon-Type Structured Li1. 4al0. 4ti1. 6 (Po4) 3 Glass-Ceramics by the Citric Acid-Assisted Sol–Gel Method. Solid State Ion. 2007, 178, 29-34.
51. Delmas, C.; Nadiri, A.; Soubeyroux, J., The Nasicon-Type Titanium Phosphates Ati2 (Po4) 3 (a= Li, Na) as Electrode Materials. Solid State Ion. 1988, 28, 419-423.
52. Feng, J.; Lu, L.; Lai, M., Lithium Storage Capability of Lithium Ion Conductor Li1.5Al0.5Ge1.5(PO4)3. J. Alloys Compd. 2010, 501, 255-258.
53. Fu, J., Fast Li+ Ion Conducting Glass-Ceramics in the System Li2O–Al2O3–GeO2–P2O5. Solid State Ion. 1997, 104, 191-194.
54. Kasper, H., Series of Rare Earth Garnets Ln3+3M2Li+ 3O12 (M= Te, W). Inorg. Chem. 1969, 8, 1000-1002.
55. Luo, W.; Gong, Y.; Zhu, Y.; Li, Y.; Yao, Y.; Zhang, Y.; Fu, K.; Pastel, G.; Lin, C. F.; Mo, Y., Reducing Interfacial Resistance between Garnet‐Structured Solid‐State Electrolyte and Li‐Metal Anode by a Germanium Layer. Adv Mater 2017, 29, 1606042.
56. Wang, D.; Zhong, G.; Dolotko, O.; Li, Y.; McDonald, M. J.; Mi, J.; Fu, R.; Yang, Y., The Synergistic Effects of Al and Te on the Structure and Li+-Mobility of Garnet-Type Solid Electrolytes. J. Mater. Chem. 2014, 2, 20271-20279.
57. Hu, S.; Li, Y.-F.; Yang, R.; Yang, Z.; Wang, L., Structure and Ionic Conductivity of Li7La3Zr2−XGexO12 Garnet-Like Solid Electrolyte for All Solid State Lithium Ion Batteries. Ceram. Int. 2018, 44, 6614-6618.
58. Murugan, R.; Thangadurai, V.; Weppner, W., Fast Lithium Ion Conduction in Garnet‐Type Li7la3zr2o12. Angew. Chem., Int. Ed. 2007, 46, 7778-7781.
59. Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J., Synthesis and Structure Analysis of Tetragonal Li7la3zr2o12 with the Garnet-Related Type Structure. J. Solid State Chem. 2009, 182, 2046-2052.
60. Song, S.; Chen, B.; Ruan, Y.; Sun, J.; Yu, L.; Wang, Y.; Thokchom, J., Gd-Doped Li7la3zr2o12 Garnet-Type Solid Electrolytes for All-Solid-State Li-Ion Batteries. Electrochim. Acta 2018, 270, 501-508.
61. Miara, L. J.; Richards, W. D.; Wang, Y. E.; Ceder, G., First-Principles Studies on Cation Dopants and Electrolyte| Cathode Interphases for Lithium Garnets. Chem. Mater. 2015, 27, 4040-4047.
62. Pervez, S. A.; Kim, G.; Vinayan, B. P.; Cambaz, M. A.; Kuenzel, M.; Hekmatfar, M.; Fichtner, M.; Passerini, S., Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solid‐State Batteries Using Ionic Liquid‐Based Interlayers. Small 2020, 16, 2000279.
63. Larraz, G.; Orera, A.; Sanjuán, M., Cubic Phases of Garnet-Type Li 7 La 3 Zr 2 O 12: The Role of Hydration. J. Mater. Chem. 2013, 1, 11419-11428.
64. Xia, W.; Xu, B.; Duan, H.; Tang, X.; Guo, Y.; Kang, H.; Li, H.; Liu, H., Reaction Mechanisms of Lithium Garnet Pellets in Ambient Air: The Effect of Humidity and Co2. J. Am. Ceram. Soc. 2017, 100, 2832-2839.
65. Williams, D.; Miller, R., Effect of Water Vapor on the Lioh-Co2 Reaction. Dynamic Isothermal System. Ind. Eng. Chem. Fundam. 1970, 9, 454-457.
66. Inaguma, Y.; Liquan, C.; Itoh, M.; Nakamura, T.; Uchida, T.; Ikuta, H.; Wakihara, M., High Ionic Conductivity in Lithium Lanthanum Titanate. Solid State Commun. 1993, 86, 689-693.
67. Chen, C.; Amine, K., Ionic Conductivity, Lithium Insertion and Extraction of Lanthanum Lithium Titanate. Solid State Ion. 2001, 144, 51-57.
68. Thangadurai, V.; Shukla, A.; Gopalakrishnan, J., Lisr1. 650.35 B1. 3b ‘1.7 O9 (B= Ti, Zr; B ‘= Nb, Ta): New Lithium Ion Conductors Based on the Perovskite Structure. Chem. Mater. 1999, 11, 835-839.
69. Yu, R.; Du, Q.-X.; Zou, B.-K.; Wen, Z.-Y.; Chen, C.-H., Synthesis and Characterization of Perovskite-Type (Li, Sr)(Zr, Nb) O3 Quaternary Solid Electrolyte for All-Solid-State Batteries. J. Power Sources 2016, 306, 623-629.
70. Zhao, Y.; Daemen, L. L., Superionic Conductivity in Lithium-Rich Anti-Perovskites. J. Am. Chem. Soc. 2012, 134, 15042-15047.
71. Emly, A.; Kioupakis, E.; Van der Ven, A., Phase Stability and Transport Mechanisms in Antiperovskite Li3ocl and Li3obr Superionic Conductors. Chem. Mater. 2013, 25, 4663-4670.
72. Lü, X.; Howard, J. W.; Chen, A.; Zhu, J.; Li, S.; Wu, G.; Dowden, P.; Xu, H.; Zhao, Y.; Jia, Q., Antiperovskite Li3OCl Superionic Conductor Films for Solid‐State Li‐Ion Batteries. Adv. Sci 2016, 3, 1500359.
73. Dawson, J. A.; Attari, T. S.; Chen, H.; Emge, S. P.; Johnston, K. E.; Islam, M. S., Elucidating Lithium-Ion and Proton Dynamics in Anti-Perovskite Solid Electrolytes. Energy Environ. Sci. 2018, 11, 2993-3002.
74. Feng, W.; Zhu, L.; Dong, X.; Wang, Y.; Xia, Y.; Wang, F., Enhanced Moisture Stability of Lithium Rich Anti‐Perovskites for Sustainable All Solid‐State Lithium Batteries. Adv Mater 2022, 2210365.
75. Hong, H.-P., Crystal Structure and Ionic Conductivity of Li14Zn(GeO4)4 and Other New Li+ Superionic Conductors. Mater. Res. Bull. 1978, 13, 117-124.
76. Bruce, P. G.; West, A., The a‐C Conductivity of Polycrystalline Lisicon, Li2+2xZn1−XGeO4, and a Model for Intergranular Constriction Resistances. J. Electrochem. Soc. 1983, 130, 662.
77. Kuwano, J.; West, A., New Li+ Ion Conductors in the System, Li4GeO4-Li3VO4. Mater. Res. Bull. 1980, 15, 1661-1667.
78. Song, S.; Lu, J.; Zheng, F.; Duong, H. M.; Lu, L., A Facile Strategy to Achieve High Conduction and Excellent Chemical Stability of Lithium Solid Electrolytes. RSC Adv. 2015, 5, 6588-6594.
79. Bates, J.; Dudney, N.; Gruzalski, G.; Zuhr, R.; Choudhury, A.; Luck, C.; Robertson, J., Fabrication and Characterization of Amorphous Lithium Electrolyte Thin Films and Rechargeable Thin-Film Batteries. J. Power Sources 1993, 43, 103-110.
80. Hamon, Y.; Douard, A.; Sabary, F.; Marcel, C.; Vinatier, P.; Pecquenard, B.; Levasseur, A., Influence of Sputtering Conditions on Ionic Conductivity of Lipon Thin Films. Solid State Ion. 2006, 177, 257-261.
81. Yu, X.; Bates, J.; Jellison, G.; Hart, F., A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride. J. Electrochem. Soc. 1997, 144, 524.
82. Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. J., Solid Electrolyte: The Key for High‐Voltage Lithium Batteries. Adv. Energy Mater. 2015, 5, 1401408.
83. Liu, Y.; Xie, K.; Pan, Y.; Wang, H.; Chen, Y.; Li, Y.; Zheng, C., Impacts of the Properties of Anode Solid Electrolyte Interface on the Storage Life of Li-Ion Batteries. J. Phys. Chem. C 2018, 122, 9411-9416.
84. Su, Y.; Falgenhauer, J.; Polity, A.; Leichtweiß, T.; Kronenberger, A.; Obel, J.; Zhou, S.; Schlettwein, D.; Janek, J.; Meyer, B. K., Lipon Thin Films with High Nitrogen Content for Application in Lithium Batteries and Electrochromic Devices Prepared by Rf Magnetron Sputtering. Solid State Ion. 2015, 282, 63-69.
85. Balaish, M.; Gonzalez-Rosillo, J. C.; Kim, K. J.; Zhu, Y.; Hood, Z. D.; Rupp, J. L., Processing Thin but Robust Electrolytes for Solid-State Batteries. Nat. Energy. 2021, 6, 227-239.
86. Dietrich, C.; Weber, D. A.; Culver, S.; Senyshyn, A.; Sedlmaier, S. J.; Indris, S.; Janek, J. r.; Zeier, W. G., Synthesis, Structural Characterization, and Lithium Ion Conductivity of the Lithium Thiophosphate Li2P2S6. Inorg. Chem. 2017, 56, 6681-6687.
87. Mercier, R.; Malugani, J.; Fahys, B.; Douglande, J.; Robert, G., Synthese, Structure Cristalline Et Analyse Vibrationnelle De L'hexathiohypodiphosphate De Lithium Li4P2S6. J. Solid State Chem. 1982, 43, 151-162.
88. Yamane, H.; Shibata, M.; Shimane, Y.; Junke, T.; Seino, Y.; Adams, S.; Minami, K.; Hayashi, A.; Tatsumisago, M., Crystal Structure of a Superionic Conductor, Li7P3S11. Solid State Ion. 2007, 178, 1163-1167.
89. Mercier, R.; Malugani, J.-P.; Fahys, B.; Robert, G.; Douglade, J., Structure Du Tetrathiophosphate De Lithium. Acta Crystallographica Section B 1982, 38, 1887-1890.
90. Kong, S. T.; Guen, O.; Koch, B.; Deiseroth, H. J.; Eckert, H.; Reiner, C., Structural Characterisation of the Li Argyrodites Li7PS6 and Li7PSe6 and Their Solid Solutions: Quantification of Site Preferences by Mas‐Nmr Spectroscopy. Eur. J. Chem. 2010, 16, 5138-5147.
91. Dietrich, C.; Weber, D. A.; Sedlmaier, S. J.; Indris, S.; Culver, S. P.; Walter, D.; Janek, J.; Zeier, W. G., Lithium Ion Conductivity in Li2S–P2S5 Glasses–Building Units and Local Structure Evolution During the Crystallization of Superionic Conductors Li3PS4, Li7P3S 11 and Li4P2S7. J. Mater. Chem. 2017, 5, 18111-18119.
92. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M., High Lithium Ion Conducting Glass-Ceramics in the System Li2s–P2s5. Solid State Ion. 2006, 177, 2721-2725.
93. Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M., A Sulphide Lithium Super Ion Conductor Is Superior to Liquid Ion Conductors for Use in Rechargeable Batteries. Energy Environ. Sci. 2014, 7, 627-631.
94. Minami, K.; Mizuno, F.; Hayashi, A.; Tatsumisago, M., Lithium Ion Conductivity of the Li2S–P2S5 Glass-Based Electrolytes Prepared by the Melt Quenching Method. Solid State Ion. 2007, 178, 837-841.
95. Kanno, R.; Hata, T.; Kawamoto, Y.; Irie, M., Synthesis of a New Lithium Ionic Conductor, Thio-Lisicon–Lithium Germanium Sulfide System. Solid State Ion. 2000, 130, 97-104.
96. Kaib, T.; Haddadpour, S.; Kapitein, M.; Bron, P.; Schröder, C.; Eckert, H.; Roling, B.; Dehnen, S., New Lithium Chalcogenidotetrelates, Licht: Synthesis and Characterization of the Li+-Conducting Tetralithium Ortho-Sulfidostannate Li4SnS4. Chem. Mater. 2012, 24, 2211-2219.
97. Kanno, R.; Murayama, M., Lithium Ionic Conductor Thio-Lisicon: The Li2SGeS2P 2S5 System. J. Electrochem. Soc. 2001, 148, A742.
98. Zheng, F.; Kotobuki, M.; Song, S.; Lai, M. O.; Lu, L., Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries. J. Power Sources 2018, 389, 198-213.
99. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K., A Lithium Superionic Conductor. Nat. Mater. 2011, 10, 682-686.
100. Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Günne, J. r.; Dehnen, S.; Roling, B., Li10snp2s12: An Affordable Lithium Superionic Conductor. J. Am. Chem. Soc. 2013, 135, 15694-15697.
101. Yang, K.; Dong, J.; Zhang, L.; Li, Y.; Wang, L., Dual Doping: An Effective Method to Enhance the Electrochemical Properties of Li10GeP2S12‐Based Solid Electrolytes. J. Am. Ceram. Soc. 2015, 98, 3831-3835.
102. Whiteley, J. M.; Woo, J. H.; Hu, E.; Nam, K.-W.; Lee, S.-H., Empowering the Lithium Metal Battery through a Silicon-Based Superionic Conductor. J. Electrochem. Soc. 2014, 161, A1812.
103. Kato, Y.; Saito, R.; Sakano, M.; Mitsui, A.; Hirayama, M.; Kanno, R., Synthesis, Structure and Lithium Ionic Conductivity of Solid Solutions of Li10(Ge1−XMx)P2S12 (M= Si, Sn). J. Power Sources 2014, 271, 60-64.
104. Bron, P.; Dehnen, S.; Roling, B., Li10Si0.3Sn0.7P2S12–a Low-Cost and Low-Grain-Boundary-Resistance Lithium Superionic Conductor. J. Power Sources 2016, 329, 530-535.
105. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-Power All-Solid-State Batteries Using Sulfide Superionic Conductors. Nat. Energy. 2016, 1, 1-7.
106. Bai, Y.; Zhao, Y.; Li, W.; Meng, L.; Bai, Y.; Chen, G., New Insight for Solid Sulfide Electrolytes Lsipsi by Using Si/P/S as the Raw Materials and I Doping. ACS Sustain. Chem. Eng. 2019, 7, 12930-12937.
107. Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M., Li6PS5X: A Class of Crystalline Li‐Rich Solids with an Unusually High Li+ Mobility. Angew. Chem., Int. Ed. 2008, 47, 755-758.
108. Beeken, R.; Garbe, J.; Gillis, J.; Petersen, N.; Podoll, B.; Stoneman, M., Electrical Conductivities of the Ag6ps5x and the Cu6PSe5X (X= Br, I) Argyrodites. J. Phys. Chem. Solids 2005, 66, 882-886.
109. De Klerk, N. J.; Rosłoń, I.; Wagemaker, M., Diffusion Mechanism of Li Argyrodite Solid Electrolytes for Li-Ion Batteries and Prediction of Optimized Halogen Doping: The Effect of Li Vacancies, Halogens, and Halogen Disorder. Chem. Mater. 2016, 28, 7955-7963.
110. Kraft, M. A.; Ohno, S.; Zinkevich, T.; Koerver, R.; Culver, S. P.; Fuchs, T.; Senyshyn, A.; Indris, S.; Morgan, B. J.; Zeier, W. G., Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li6+XP1–XGeXS5I for All-Solid-State Batteries. J. Am. Chem. Soc. 2018, 140, 16330-16339.
111. Catlow, C. R. A., Static Lattice Simulation of Structure and Transport in Superionic Conductors. Solid State Ion. 1983, 8, 89-107.
112. Kraft, M. A.; Culver, S. P.; Calderon, M.; Böcher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J. r.; Zeier, W. G., Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X= Cl, Br, I). J. Am. Chem. Soc. 2017, 139, 10909-10918.
113. Bernges, T.; Culver, S. P.; Minafra, N.; Koerver, R.; Zeier, W. G., Competing Structural Influences in the Li Superionic Conducting Argyrodites Li6PS5–XSeXBr (0≤ X≤ 1) Upon Se Substitution. Inorg. Chem. 2018, 57, 13920-13928.
114. Pecher, O.; Kong, S. T.; Goebel, T.; Nickel, V.; Weichert, K.; Reiner, C.; Deiseroth, H. J.; Maier, J.; Haarmann, F.; Zahn, D., Atomistic Characterisation of Li+ Mobility and Conductivity in Li7−XPS6−XIX Argyrodites from Molecular Dynamics Simulations, Solid‐State Nmr, and Impedance Spectroscopy. Eur. J. Chem. 2010, 16, 8347-8354.
115. Shannon, R. D., Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta crystallographica section A 1976, 32, 751-767.
116. Rayavarapu, P. R.; Sharma, N.; Peterson, V. K.; Adams, S., Variation in Structure and Li+-Ion Migration in Argyrodite-Type Li6PS5X (X= Cl, Br, I) Solid Electrolytes. J Solid State Electrochem 2012, 16, 1807-1813.
117. Hanghofer, I.; Brinek, M.; Eisbacher, S.; Bitschnau, B.; Volck, M.; Hennige, V.; Hanzu, I.; Rettenwander, D.; Wilkening, H., Substitutional Disorder: Structure and Ion Dynamics of the Argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I. PCCP 2019, 21, 8489-8507.
118. Yu, C.; Ganapathy, S.; Hageman, J.; Van Eijck, L.; Van Eck, E. R.; Zhang, L.; Schwietert, T.; Basak, S.; Kelder, E. M.; Wagemaker, M., Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite Li6PS5Cl Solid-State Electrolyte. ACS Appl Mater Interfaces 2018, 10, 33296-33306.
119. Doux, J. M.; Nguyen, H.; Tan, D. H.; Banerjee, A.; Wang, X.; Wu, E. A.; Jo, C.; Yang, H.; Meng, Y. S., Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries. Adv. Energy Mater. 2020, 10, 1903253.
120. Minafra, N.; Culver, S. P.; Krauskopf, T.; Senyshyn, A.; Zeier, W. G., Effect of Si Substitution on the Structural and Transport Properties of Superionic Li-Argyrodites. J. Mater. Chem. 2018, 6, 645-651.
121. Yubuchi, S.; Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M., Preparation of High Lithium-Ion Conducting Li6PS5Cl Solid Electrolyte from Ethanol Solution for All-Solid-State Lithium Batteries. J. Power Sources 2015, 293, 941-945.
122. Zhao, F.; Liang, J.; Yu, C.; Sun, Q.; Li, X.; Adair, K.; Wang, C.; Zhao, Y.; Zhang, S.; Li, W., A Versatile Sn‐Substituted Argyrodite Sulfide Electrolyte for All‐Solid‐State Li Metal Batteries. Adv. Energy Mater. 2020, 10, 1903422.
123. Yu, C.; Li, Y.; Willans, M.; Zhao, Y.; Adair, K. R.; Zhao, F.; Li, W.; Deng, S.; Liang, J.; Banis, M. N., Superionic Conductivity in Lithium Argyrodite Solid-State Electrolyte by Controlled Cl-Doping. Nano Energy 2020, 69, 104396.
124. Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F., Boosting Solid‐State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution. Angew. Chem., Int. Ed. 2019, 58, 8681-8686.
125. Subramanian, Y.; Rajagopal, R.; Ryu, K.-S., Synthesis, Air Stability and Electrochemical Investigation of Lithium Superionic Bromine Substituted Argyrodite (Li6-XPS5-XCl1.0Brx) for All-Solid-State Lithium Batteries. J. Power Sources 2022, 520, 230849.
126. Xuan, M.; Xiao, W.; Xu, H.; Shen, Y.; Li, Z.; Zhang, S.; Wang, Z.; Shao, G., Ultrafast Solid-State Lithium Ion Conductor through Alloying Induced Lattice Softening of Li6PS5Cl. J. Mater. Chem. 2018, 6, 19231-19240.
127. Deng, Z.; Zhu, Z.; Chu, I.-H.; Ong, S. P., Data-Driven First-Principles Methods for the Study and Design of Alkali Superionic Conductors. Chem. Mater. 2017, 29, 281-288.
128. Liu, H.; Zhu, Q.; Wang, C.; Wang, G.; Liang, Y.; Li, D.; Gao, L.; Fan, L. Z., High Air Stability and Excellent Li Metal Compatibility of Argyrodite‐Based Electrolyte Enabling Superior All‐Solid‐State Li Metal Batteries. Adv. Funct. Mater. 2022, 32, 2203858.
129. Li, G.; Wu, S.; Zheng, H.; Yang, Y.; Cai, J.; Zhu, H.; Huang, X.; Liu, H.; Duan, H., Sn‐O Dual‐Substituted Chlorine‐Rich Argyrodite Electrolyte with Enhanced Moisture and Electrochemical Stability. Adv. Funct. Mater. 2023, 33, 2211805.
130. Zhu, Y.; He, X.; Mo, Y., Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS Appl Mater Interfaces 2015, 7, 23685-23693.
131. Yu, C.; van Eijck, L.; Ganapathy, S.; Wagemaker, M., Synthesis, Structure and Electrochemical Performance of the Argyrodite Li6PS5Cl Solid Electrolyte for Li-Ion Solid State Batteries. Electrochim. Acta 2016, 215, 93-99.
132. Pearson, R. G., Hard and Soft Acids and Bases, Hsab, Part 1: Fundamental Principles. J Chem Educ. 1968, 45, 581.
133. Jensen, W. B., The Lewis Acid-Base Definitions: A Status Report. Chem. Rev. 1978, 78, 1-22.
134. Lee, J.; Lee, T.; Char, K.; Kim, K. J.; Choi, J. W., Issues and Advances in Scaling up Sulfide-Based All-Solid-State Batteries. Acc. Chem. Res. 2021, 54, 3390-3402.
135. Taklu, B. W.; Su, W.-N.; Nikodimos, Y.; Lakshmanan, K.; Temesgen, N. T.; Lin, P.-X.; Jiang, S.-K.; Huang, C.-J.; Wang, D.-Y.; Sheu, H.-S., Dual Cucl Doped Argyrodite Superconductor to Boost the Interfacial Compatibility and Air Stability for All Solid-State Lithium Metal Batteries. Nano Energy 2021, 90, 106542.
136. Seol, K.; Kaliyaperumal, C.; Uthayakumar, A.; Yoon, I.; Lee, G.; Shin, D., Enhancing the Moisture Stability and Electrochemical Performances of Li6ps5cl Solid Electrolytes through Ga Substitution. Electrochim. Acta 2023, 441, 141757.
137. Li, X.; Liang, J.; Yang, X.; Adair, K. R.; Wang, C.; Zhao, F.; Sun, X., Progress and Perspectives on Halide Lithium Conductors for All-Solid-State Lithium Batteries. Energy Environ. Sci. 2020, 13, 1429-1461.
138. Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S., Solid Halide Electrolytes with High Lithium‐Ion Conductivity for Application in 4 V Class Bulk‐Type All‐Solid‐State Batteries. Adv Mater 2018, 30, 1803075.
139. Liang, J.; Li, X.; Adair, K. R.; Sun, X., Metal Halide Superionic Conductors for All-Solid-State Batteries. Acc. Chem. Res. 2021, 54, 1023-1033.
140. Park, J.; Han, D.; Kwak, H.; Han, Y.; Choi, Y. J.; Nam, K.-W.; Jung, Y. S., Heat Treatment Protocol for Modulating Ionic Conductivity Via Structural Evolution of Li3-XYb1-XMXCl6 (M= Hf4+, Zr4+) New Halide Superionic Conductors for All-Solid-State Batteries. J. Chem. Eng. 2021, 425, 130630.
141. Riegger, L. M.; Schlem, R.; Sann, J.; Zeier, W. G.; Janek, J., Lithium‐Metal Anode Instability of the Superionic Halide Solid Electrolytes and the Implications for Solid‐State Batteries. Angew. Chem., Int. Ed. 2021, 60, 6718-6723.
142. Wang, C.; Liang, J.; Kim, J. T.; Sun, X., Prospects of Halide-Based All-Solid-State Batteries: From Material Design to Practical Application. Sci. Adv. 2022, 8, eadc9516.
143. Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G., Interface Stability in Solid-State Batteries. Chem. Mater. 2016, 28, 266-273.
144. Kresse, G.; Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169.
145. Kresse, G.; Furthmüller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15-50.
146. Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758.
147. Klimeš, J.; Bowler, D. R.; Michaelides, A., Van Der Waals Density Functionals Applied to Solids. Phys. Rev. B 2011, 83, 195131.
148. Schimka, L.; Harl, J.; Kresse, G., Improved Hybrid Functional for Solids: The Hsesol Functional. J. Chem. Phys. 2011, 134, 024116.
149. Heyd, J.; Scuseria, G. E.; Ernzerhof, M., Hybrid Functionals Based on a Screened Coulomb Potential. Chem. Phys. 2003, 118, 8207-8215.
150. Dongho Nguimdo, G.; Joubert, D. P., A Density Functional (PBE, PBEsol, HSE06) Study of the Structural, Electronic and Optical Properties of the Ternary Compounds AgAlX2 (X= S, Se, Te). Eur Phys J B . 2015, 88, 1-10.
151. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. Chem. Phys. 2000, 113, 9901-9904.
152. Nosé, S., A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511-519.
153. Hoover, W. G., Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695.
154. Humphrey, W.; Dalke, A.; Schulten, K., Vmd: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33-38.
155. Mehrer, H.; Stolwijk, N. A., Heroes and Highlights in the History of Diffusion. 2009.
156. Robinson, R. A.; Stokes, R. H., Electrolyte Solutions; Courier Corporation, 2002.
157. Zhang, Z.; Zhang, L.; Liu, Y.; Yu, C.; Yan, X.; Xu, B.; Wang, L.-m., Synthesis and Characterization of Argyrodite Solid Electrolytes for All-Solid-State Li-Ion Batteries. J. Alloys Compd. 2018, 747, 227-235.
158. Chen, Y.; Li, W.; Sun, C.; Jin, J.; Wang, Q.; Chen, X.; Zha, W.; Wen, Z., Sustained Release‐Driven Formation of Ultrastable Sei between Li6ps5cl and Lithium Anode for Sulfide‐Based Solid‐State Batteries. Adv. Energy Mater. 2021, 11, 2002545.
159. Cheng, Y.-H., First-Principles Study on the Lithium-Ion Conductivity and Stability of Argyrodite Solid Electrolyte by Doping. Master’s thesis, National Taiwan University of Science and Technology 2021, https://hdl.handle.net/11296/ys849q.
160. Stamminger, A. R.; Ziebarth, B.; Mrovec, M.; Hammerschmidt, T.; Drautz, R., Ionic Conductivity and Its Dependence on Structural Disorder in Halogenated Argyrodites Li6PS5X (X= Br, Cl, I). Chem. Mater. 2019, 31, 8673-8678.
161. Adeli, P.; Bazak, J. D.; Huq, A.; Goward, G. R.; Nazar, L. F., Influence of Aliovalent Cation Substitution and Mechanical Compression on Li-Ion Conductivity and Diffusivity in Argyrodite Solid Electrolytes. Chem. Mater. 2020, 33, 146-157.
162. Jung, W. D.; Kim, J.-S.; Choi, S.; Kim, S.; Jeon, M.; Jung, H.-G.; Chung, K. Y.; Lee, J.-H.; Kim, B.-K.; Lee, J.-H., Superionic Halogen-Rich Li-Argyrodites Using in Situ Nanocrystal Nucleation and Rapid Crystal Growth. Nano Letters 2020, 20, 2303-2309.
163. Feng, X.; Chien, P.-H.; Wang, Y.; Patel, S.; Wang, P.; Liu, H.; Immediato-Scuotto, M.; Hu, Y.-Y., Enhanced Ion Conduction by Enforcing Structural Disorder in Li-Deficient Argyrodites Li6−XPS5−XCl1+X. Energy Storage Mater. 2020, 30, 67-73.
164. Yubuchi, S.; Uematsu, M.; Deguchi, M.; Hayashi, A.; Tatsumisago, M., Lithium-Ion-Conducting Argyrodite-Type Li6PS5X (X= Cl, Br, I) Solid Electrolytes Prepared by a Liquid-Phase Technique Using Ethanol as a Solvent. ACS Appl. Energy Mater. 2018, 1, 3622-3629.
165. Zhang, J.; Gu, X., Hydrolysis Mechanism of Li-Argyrodite Li6ps5cl in Air. Rare Met. 2023, 42, 47-55.
166. Chen, H. M.; Maohua, C.; Adams, S., Stability and Ionic Mobility in Argyrodite-Related Lithium-Ion Solid Electrolytes. PCCP 2015, 17, 16494-16506.
167. Nikodimos, Y.; Huang, C.-J.; Taklu, B. W.; Su, W.-N.; Hwang, B. J., Chemical Stability of Sulfide Solid-State Electrolytes: Stability toward Humid Air and Compatibility with Solvents and Binders. Energy Environ. Sci. 2022.
168. Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M., Structural Change of Li2S–P2S5 Sulfide Solid Electrolytes in the Atmosphere. Solid State Ion. 2011, 182, 116-119.


無法下載圖示 全文公開日期 2025/08/15 (校內網路)
全文公開日期 2025/08/15 (校外網路)
全文公開日期 2025/08/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE