簡易檢索 / 詳目顯示

研究生: 楊勝綜
Sheng-Tsung Yang
論文名稱: 板橋區深開挖之案例研究
A case study of top down deep excavation in Banqiao District
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 謝百鈎
Pio-Go Hsieh
鄧福宸
Fu-Chen Teng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 106
中文關鍵詞: 深開挖壁體變位地表最大沉陷量
外文關鍵詞: Deep excavation
相關次數: 點閱:188下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

中文摘要
本文介紹位於鄰近板橋地區深開挖實例,本案例為地下四層、地上二十八層鋼骨住宅,開挖深度為16.5m,其地質於開挖面以厚層粉土質粘土與粉土質中細砂互層為主,開挖面以下為粉土質黏土偶夾砂質粉土與粉質細砂層及卵礫石層為主。基地地下水位高又臨近周邊老舊房舍,增加深開挖所產生之大地工程問題與作業之難度,面對此區困難地質條件及地下水文特性,須從地工設計及施工層面提出解決方案以降低深開挖之風險。本案例基礎開挖採逆打工法施作,逆打鋼柱為全套管基樁,擋土結構為連續壁,配合地中壁、扶壁之配置,及利用樓板與扶壁接合以提供臨時支撐之構想,抑制開挖期間擋土結構之側向變位與增加開挖之穩定性。依此進行完整規劃之全區開挖觀測系統計畫於基地開挖施工中,獲得實際可靠觀測資料,探討與案例比較開挖時擋土壁體變形之行為。在本研究中之最大壁體變位於地表下16.5m處,最大變位量為5cm。研判為本案開挖面下地層為卵礫石層,地質狀況佳之因素,壁體最大變位量與開挖深度之比值約均在0.3%左右。本研究壁體最大變位量與地表最大沉陷量之比值約發生在0.7~0.9之間。鄰近建築物於施工期間傾斜情況,最大傾斜量發生在最終開挖面施工階段,往基地方向傾斜其最大傾斜量約為1/2888。地下水位因施工期間及靜置時間水位變化,於擋土壁施工及開挖階段施工期間,水位觀測變化量約為2m,疑似施工抽水所致。本研究另進行案例之驗證比較,亦因本案開挖面下之地質狀況良好,故比較案例後,本研究使用預估沉陷公式與施工期間觀測數值接近,誤差趨近可接受範圍。


英文摘要
This paper introduces an example of deep excavation project located in Banqiao area. This project case is a steel-framed building with 28 story above ground and 4 story underground. Deep excavation example is on 16.5m underground while soil geology composition is mainly a thick layer of silty clay and silty medium-fine sand interlayers on the excavation surface, and silty clay occasionally interbedded with sandy silt, silty fine sand and pebble gravel layers below the excavation surface. The groundwater level of the base is high and it is close to the surrounding old buildings, which increases the geotechnical problems caused by deep excavation and the difficulty of operation. Facing the difficult geological conditions and underground water characteristics of this area, solutions must be proposed from the ground engineering design and construction levels to reduce the risk of deep excavation.In this case, the foundation excavation is carried out by the top-down construction method. Underground steel column is a full-casing foundation pile, and the retaining structure is a continuous wall, which is matched with the configuration of the mid-ground wall and buttress, and the floor slab and the buttress are used to provide temporary support. The concept is to suppress the lateral displacement of the retaining structure during excavation and increase the stability of the excavation. Based on condition stated above, a whole-area excavation observation system is planned to be used in the excavation construction of the base to obtain actual and reliable observation data, and to discuss and compare the behavior of retaining wall deformation during excavation with the case. The largest wall displacement in this study was located 16.5 m below the surface, with a displacement of 5 cm. Based on research it is judged that the stratum under the excavation face in this case is a pebble gravel layer, and the ratio of the maximum displacement of the wall to the excavation depth is about 0.3% due to the good geological conditions. In this study, the ratio of the maximum displacement of the wall to the maximum subsidence of the surface occurred between 0.7 and 0.9. As for the inclination of adjacent buildings during construction, the maximum inclination occurred in the construction stage of the final excavation surface, and the maximum inclination was about 1/2888 in the direction of the base. The groundwater level changes due to the water level during the construction period and the rest time. During the construction of the retaining wall and the excavation stage, the observed change in water level is about 2m, which is suspected to be caused by construction pumping during. This study also conducts verification and comparison, and because the geological condition under the excavation surface is good, after comparing cases, The soil settlements computed using prediction formula in this study are close to those observed during construction with acceptable error.

目  錄 頁次 目  錄 I 表目錄 III 圖目錄 IV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與內容 2 第二章 文獻回顧 4 2.1 地下開挖工法簡介 4 2.1.1 順打工法 4 2.1.2 逆打工法 5 2.1.3 雙順打工法 7 2.2 深開挖擋土壁側向變形行為探討 10 2.3 地表沉陷型態與擋土壁體位移關係研究 14 2.3.1 地表沉陷型態 14 2.3.2 地表沉陷量預估 16 2.4 地中壁及扶壁應用及抑制連續壁體變形之探討 24 第三章 工程案例基地介紹 28 3.1 工程概述 28 3.2 基地地質 31 3.3 鄰房保護措施 35 3.4 開挖工序與抽排水規劃 37 3.5 監測系統佈設與觀測頻率 41 3.5.1 監測系統規劃項目 41 3.5.2 監測系統觀測頻率 44 第四章 監測結果分析 45 4.1 前言 45 4.2 擋土壁變形 45 4.2.1 傾度管量測結果的修正 45 4.2.2 擋土壁變形分析 75 4.3 沉陷分析 76 第五章 結論與建議 95 5.1 結論 95 5.2 建議 97 參考文獻 98

參考文獻
(1)闕河淵、吳沛軫、朱世忠、蘇信淵(1996),地下工程施工對鄰近建物保護施作時機及成效檢討,地工技術,第54期,第77~86頁。
(2)蔡琪駿、林亭媚、吳立華、謝旭昇(2016),新莊副都心逆打工法深開挖工程實務剖析,土木水利 第四十三卷 第二期。
(3)楊國榮、黃立煌、王勝男(1995),台北盆地礫石層深開挖地下水問題,國際卵礫石層地下工程研討會,3月,台北,第4-21~4-28頁。
(4)黃南輝、金全鑫(2000),台北捷運施工和鄰房保護地盤改良案例。http://www.maa.com.tw/common/publications/2000/2000-012.pdf
(5)台糖(1976)水井手冊,民國62年初版,民國65年修增再版。
(6)傅怡仁、秦中天、王如龍、陳明山(1990),台北盆地內礫石層分佈之研究,土木水利,第十六卷,第十四期,民國79年2月。
(7)黃南輝、李宗燁、周忠仁、蘇鼎鈞(2011),台北盆地深開挖經驗,台北市大地技師公會年會。
(8)歐章煜、謝百鈎、丘達昌(1992),開挖引致之地表沉陷與建築物之容許沉陷量,地工技術,第40期,第09~24頁。
(9)謝百鈎、林亦郎、歐章煜(2010),深開挖設置地中壁及扶壁之三向(9) 度數值分析與成效,中國土木水利工程學刊,第三十二卷,第一期,第09~24頁。
(10)歐章煜、謝百鈎(1996),以經驗公式預測台北盆地深開挖引致之地表沉陷,地工技術,第53期(民國85年2月)第5-14頁。
(11)謝百鈎、鄧文賓、歐章煜(2013),扶壁抑制深開挖連續壁壁體變形之探討,2013海峽兩岸地工技術/岩土工程交流研討會(11月5~7日,台北)。
(12)何樹根、鍾俊宏(2022),台灣北中南超高層建築之基礎型式-案例介紹,技師期刊,第97期,第47~52頁。
(13)歐章煜、Aswin Lim(2020),無支撐開挖工法的發展及原理,地工技術(No.164/2020.6~7)
(14)廖瑞堂(1996),逆打深開挖之行為研究,國立台灣工業技術學院營建工程技術研究所博士論文。
(15)歐章煜(2018),基礎開挖工程實務,科技圖書。
(16)歐章煜(2017),進階深開挖工程分析與設計,科技圖書。
(17)謝俊誼(2021),逆打與雙順打工程看照片輕鬆學,詹氏書局。
(18)瀚鵬工程股份有限公司,新北市板橋區光華段494、443-8、579-1等3筆地號/安全監測系統總結報告書(2018)。
(19)環亞大地工程技師事務所,新北市板橋區光華段494、443-8、579-1等3筆地號/地質鑽探工程報告書(2011)。
(20)建築物基礎開挖工程監測準則(2017),中華民國大地工程學會。
(21)建築技術規則建築構造編基礎構造設計規範(1997),內政部建築研究所(民國86年7月1日至87年6月30日)。
(22)Peck, R.B. (1969) Deep Excavation and Tunneling in Soft Ground. State-of-the-Art Report. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, 225-290.
(23)Bowles, J. E., (1986) Foundation Analysis and Design, 4th Ed, McgrawHill Book Company, New York, U. S. A.
(24)Clough, G. W. and O’Rourke, T. D. (1990), Construction-induced movements of insitu walls. Design and Performance of Earth Retaining Structures, ASCE Special Publication, No.25, pp.439~470
(25)Department of Rapid Transit Systems (1992), Civil Engineering Design Manual, DORTS, Taipei City.
(26)Ou, C. Y., P .G. Hsieh, and Chiou, D. C. (1993), Characteristics of Ground Surface Settlement During Excavation. Canadian Geotechnical Journal, Vol. 30, No. 5, pp. 758-767.

QR CODE