簡易檢索 / 詳目顯示

研究生: 方瑞穎
Ruei-Ying Fang
論文名稱: 縮小化平面傳輸線至矩形波導轉接
Miniaturization of Planar Transmission Lines to Rectangular Waveguide Transitions
指導教授: 王蒼容
Chun-Long Wang
口試委員: 吳瑞北
Ruey-Beei Wu
鍾世忠
Shyh-Jong Chung
莊晴光
Ching-Kuang C. Tzuang
洪子聖
Tzyy-sheng Horng
馬自莊
Tzyh-Ghuang Ma
林祐生
Yo-Shen Lin
徐敬文
Ching-Wen Hsue
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 114
中文關鍵詞: 平面傳輸線矩形波導轉接縮小化
外文關鍵詞: planar transmission line, rectangular waveguide, transition, miniaturization
相關次數: 點閱:462下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了增加通訊設備的可攜性及降低設備的生產成本,微型化電路已成為近年來重要的發展趨勢之ㄧ。因此,如何整合微型化技術與平面傳輸線至矩形波導轉接,達成微型化且寬頻的平面傳輸線至矩形波導轉接,即是本研究的重點。因不同的平面傳輸線結構需要與各自相對應的微型化技術整合,所以在本論文中,我們使用三種不同形式的微型化技術,分別實現微型且寬頻的槽線、共面波導及微帶線至矩形波導轉接,並且藉由量測實體電路來驗證全波模擬的結果。經量測結果證實,微型化平面傳輸線至矩形波導轉接,可以同時兼具微型且寬頻的優點。
在論文的第二章,我們首先提出一個架構簡單且寬頻的槽線至矩形波導轉接。這個架構運用四分之一波長的共面帶線來作為天線與槽線間的阻抗轉換器。為了進一步縮小這個寬頻轉接的電路面積,我們運用步階阻抗共振器(stepped-impedance resonator, SIR)來取代原有的四分之一波長阻抗轉換器。藉由這樣的替換,電路長度不僅縮小了,而且20-dB的比例頻寬可以維持住。
論文的第三章,我們首先提出一個運用四分之一波長槽線的共面波導至矩形波導轉接。。為了進一步縮小這個寬頻轉接的電路面積,我們使用電感補償的槽線(inductance-compensated slotline)來取代原有的四分之一波長槽線。藉由這樣的替換,電路長度不僅縮小了,而且頻寬可以維持住。
在論文的第四章,我們首先提出一個架構簡單的微帶線至矩形波導轉接。這個結構運用四分之一波長的雙面平行帶線(Broadside-coupled microstrip line)來作為天線與微帶線間的阻抗轉換器。為了進一步提升這個轉接的操作頻寬,我們使用電容補償的雙面平行帶線(capacitance-compensated broadside-coupled microstrip line)來取代原有的四分之一波長轉換器。藉由這樣的替換,電路面積不僅維持不變且15-dB的比例頻寬也大幅提升至37.33%。


In order to save cost and make the device more portable, several size reduction techniques are developed in this dissertation. These techniques are then applied to implement compact and broadband planar transmission line to rectangular waveguide transitions, which include compact and broadband slotline-to-rectangular waveguide transition; compact and broadband coplanar waveguide-to-rectangular waveguide transition; compact and broadband microstrip line-to-rectangular waveguide transition. The simulation and measurement results of these transitions have demonstrated that compact and broadband transitions can be achieved at the same time.
In chapter 2, a broadband slotline-to-rectangular waveguide transition using a quarter-wavelength coplanar stripline is proposed. Furthermore, in order to miniaturize the proposed transition, a stepped-impedance resonator (SIR) is used in placement of the quarter-wavelength section in the transition. The resulting slotline-to-rectangular waveguide transition using the SIR not only greatly reduces the physical size but also maintains the broadband performance.
In chapter 3, a broadband CPW-to-rectangular waveguide transition using a quarter-wavelength slotline is proposed. Furthermore, in order to miniaturize the proposed transition, a miniaturized coplanar waveguide to rectangular waveguide transition using an inductance-compensated slotline is proposed.
In chapter 4, a microstrip line-to-rectangular waveguide transition using a quarter-wavelength broadside-coupled microstrip line is proposed. The proposed transition using the quarter-wavelength broadside-coupled microstrip line is compact but has 20.95% 15-dB fractional bandwidth, which could only cover part of the X-band. In order to enhance the bandwidth, a double-section quarter-wavelength broadside-coupled microstrip line, which is implemented with the capacitance-compensated broadside-coupled microstrip line, is adopted to replace the quarter-wavelength broadside-coupled microstrip line. The microstrip line-to-rectangular waveguide transition using the capacitance-compensated broadside-coupled microstrip line is both compact and wideband.

Chapter 1 Introduction ----------------------------------------------------- 1 1.1 Motivation and Objective --------------------------------------------------- 1 1.2 Literature Survey ------------------------------------------------------------- 2 1.3 Contributions ------------------------------------------------------------------ 6 1.4 Discourse Overview ---------------------------------------------------------- 7 Chapter 2 Miniaturization of Slotline to Rectangular Waveguide Transition Using Stepped-Impedance Resonator---------16 2.1 Slotline to Rectangular Waveguide Transition Using Quarter-wavelength Coplanar Stripline ------------------------------------ 17 2.1.1 Single Transition Design ---------------------------------------------- 17 2.1.2 Back-to-back Verification --------------------------------------------- 27 2.1.3 Discussions -------------------------------------------------------------- 31 2.2 Stepped-impedance Resonator ---------------------------------------------- 34 2.3 Slotline to Rectangular Waveguide Transition Using Stepped-impedance Resonator ---------------------------------------------- 37 2.3.1 Single Transition Design ---------------------------------------------- 37 2.3.2 Back-to-back Verification --------------------------------------------- 43 2.4 Summary ----------------------------------------------------------------------- 45 Chapter 3 Miniaturization of Coplanar Waveguide to Rectangular Waveguide Transition Using Inductance-Compensated Slotline ------------------------------------------------------------- 47 3.1 Coplanar Waveguide to Rectangular Waveguide Transition Using Quarter-wavelength Slotline ------------------------------------------------ 48 3.1.1 Single Transition Design ---------------------------------------------- 48 3.1.2 Back-to-back Verification --------------------------------------------- 52 3.2 Inductance-compensated Slotline ------------------------------------------- 57 3.3 Coplanar Waveguide to Rectangular Waveguide Transition Using Inductance-compensated Slotline ------------------------------------------- 63 3.3.1 Single Transition Design ---------------------------------------------- 63 3.3.2 Back-to-back Verification --------------------------------------------- 64 3.4 Summary ----------------------------------------------------------------------- 68 Chapter 4 Miniaturization of Microstrip Line to Rectangular Waveguide Transition Using Capacitance-Compensated Broadside-Coupled microstrip line -------------------------- 69 4.1 Microstrip Line to Rectangular Waveguide Transition Using Quarter-wavelength Transformer ------------------------------------------- 70 3.1.1 Single Transition Design ---------------------------------------------- 70 3.1.2 Back-to-back Verification --------------------------------------------- 73 4.2 Capacitance-compensated Microstrip Line -------------------------------- 76 4.3 Relationship between the Broadside-coupled Microstrip Line and the Microstrip Line ------------------------------------------------------ 80 4.4 Microstrip Line to Rectangular Waveguide Transition Using Capacitance-compensated Broadside-coupled Microstrip Line -------- 83 4.4.1 Single Transition Design ---------------------------------------------- 83 4.4.2 Back-to-back Verification ---------------------------------------------101 4.5 Summary -----------------------------------------------------------------------103 Chapter 5 Conclusions --------------------------------------------------------104 5.1 Summary---------------------------------------------------------------------- 104 5.2 Future Work-------------------------------------------------------------------106 References -----------------------------------------------------------------------107 Publication List ---------------------------------------------------------------- 111

[1] S. J. Nightingale, M. A. G. Upton, B. K. Mitchell, U. K. Mishra, S. C. Palamateer, and P. M. Smith, “A 30-GHz monolithic single balanced mixer with integrated dipole receiving element,” IEEE Trans. Microw. Theory Tech., vol. MTT-33, no. 12, pp. 1603–1610, Dec. 1985.
[2] T. Q. Ho and Y.-C. Shih, “Spectral-domain analysis of E-plane waveguide to microstrip transitions,” IEEE Trans. Microw. Theory Tech., vol. 37, no. 2, pp. 388–392, Feb. 1989.
[3] N. Kaneda, Y. Qian, and T. Itoh, “A broad-band microstrip-to-waveguide transition using quasi-Yagi antenna,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2562–2567, Dec. 1999.
[4] Y. Lou, Q. Xue, and C. H. Chan, “A broadband waveguide-to-microstrip transition power splitter using finline arrays,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 310–312, Apr. 2007.
[5] H. Iizuka, K. Sakakibara, and N. Kikuma, “Millimeter-wave transition from waveguide to two microstrip lines using rectangular patch element,” IEEE Trans. Microw. Theory Tech, vol. 55, no. 5, pp. 899–905, May 2007.
[6] T.-H. Lin and R.-B. Wu, “A broadband microstrip-to-waveguide transition with tapered CPS probe,” in Proc. 32th Eur. Microw. Conf., Milan, Italy, Sep. 2002, pp. 1–4.
[7] G. E. Ponchak and R. N. Simons, “A new rectangular waveguide to coplanar waveguide transition,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., vol. 1. Dallas, USA, May 1990, pp. 491–492.
[8] Y. Li, B. Pan, J. P. Becker, J. R. East, and L. P. B. Katehi, “Fully micromachined finite-ground coplanar line-to-waveguide transitions for W-band applications,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 1001–1007, Mar. 2004.
[9] Y. Li, B. Pan, C. Lugo, M. Tentzeris, and J. Papapolymerou, “Design and characterization of a W-band micromachined cavity filter including a novel integrated transition from CPW feeding lines,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2902–2910, Dec. 2007.
[10] V. S. Möttönen and A. V. Räisänen, “Novel wide-band coplanar waveguide-to-rectangular waveguide transition,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 8, pp. 1836–1842, Aug. 2004.
[11] V. S. Möttönen, “Wideband coplanar waveguide-to-rectangular waveguide transition using fin-line taper,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 119–121, Feb. 2005.
[12] T.-H. Lin and R.-B. Wu, “CPW to waveguide transition with tapered slotline probe,” IEEE Microw. Wireless Compon. Lett., vol. 11, no. 7, pp. 314–316, Jul. 2001.
[13] C.-F. Hung, A.-S. Liu, C.-H. Chien, C.-L. Wang, and R.-B. Wu, “Bandwidth enhancement on waveguide transition to conductor backed CPW with high dielectric constant substrate,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 128–130, Feb. 2005.
[14] N. Kaneda, Y. Qian, and T. Itoh, “A broadband CPW-to-waveguide transition using quasi-Yagi antenna,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., vol. 2. Boston, USA, Jun. 2000, pp. 617–620.
[15] R.-Y. Fang and C.-L. Wang, “A broadband coplanar waveguide to rectangular waveguide transition using a truncated bow-tie antenna,” in Proc. 37th Eur. Microw. Conf., Amsterdam, the Netherlands, Oct. 2008, pp. 468–471.
[16] R.-Y. Fang and C.-L. Wang, “Wideband slotline-to-rectangular waveguide transition using truncated bow-tie antenna,” in Proc. Asia-Pacif. Microw. Conf., vol. 2. Yokohama, Japan, Dec. 2006, pp. 1395–1398.
[17] M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. MTT-28, no. 12, pp. 1413–1417, Dec. 1980.
[18] N. Marcuvitz, Waveguide Handbook, Peter Perigrinus Ltd., 1986, pp. 296–310.
[19] L.-P. Schmidt and T. Itoh “Spectral domain analysis of dominant and higher order modes in fin-lines,” IEEE Trans. Microw. Theory Tech., vol. MTT-28, no. 9, pp. 981–985, Sep. 1980.
[20] A. A. Eldek, A. Z. Elsherbeni, and C. E. Smith, “Wide-band modified printed bow-tie antenna with single and dual polarization for C- and X-band applications,” IEEE Trans. Antennas Propag., vol. 53, no. 9, pp. 3067–3072, Sep. 2005.
[21] Y.-D. Lin and S.-N. Tsai, “Coplanar waveguide-fed uniplanar bow-tie antenna,” IEEE Trans. Antennas Propag., vol. AP-45, pp. 305–306, Feb. 1997.
[22] A. S. Andrenko, “Comparative study of wideband properties of planar solid and strip fractal bow-tie dipoles,” in Proc. IEEE/ACES Int. Conf. Wireless Commun. Appl. Comput. Electromag., Apr. 2005, pp. 178–181.
[23] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. New York: Wiley, 1998, pp. 240–246.
[24] C. A. Balanis, Antenna theory analysis and design, 2nd ed. New York: Wiley, 1997, pp. 442–449.
[25] D. Uduwawala, M. Norgren, P. Fuks, and A. W. Gunawardena, “A deep parametric study of resistor-loaded bow-tie antennas for ground-penetrating radar applications using FDTD”, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 4, pp. 732–742, Apr. 2004.
[26] C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “Compact microstrip cross-coupled bandpass filters using miniaturized stepped impedance resonators,” in Proc. Asia-Pacif. Microw. Conf., vol. 1. Suzhou, China, Dec. 2005, pp. 493–496.
[27] D. M. Pozar, Microwave Engineering. 3rd ed. New York: Wiley, 2005, pp. 244–246.
[28] R.-Y. Fang and C.-L. Wang, “A broadband slotline-to-rectangular waveguide transition using a truncated bow-tie antenna,” IEEE Trans. Compon., Packag., Manuf. Technol., accepted for publication.
[29] C.-F. Liu, “Compact GCPW to SIW transitions using multi-section transmission lines,” Master theses, Dept. Electronics Eng., Nat. Taiwan Univ. of Sci. & Technol., Taiwan, 2008.
[30] H. Ogawa and A. Minagawa “Uniplanar MIC balanced multiplier-a proposed new structure for MIC's,” IEEE Trans. Microw. Theory Tech., vol. MTT-35, no. 12, pp. 1363–1368, Dec. 1987.
[31] C.-H. Ho, L. Fan, and K. Chang, “Experimental investigations of CPW to slotline transitions for uniplanar microwave integrated circuits,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., vol. 2. Atlanta, USA, Jun. 1993, pp. 877–880.
[32] D. M. Pozar, Microwave Engineering. 3rd ed. New York: Wiley, 2005, pp. 185–187.
[33] H. A. Wheeler, “Transmission-line properties of parallel wide strips by a conformal-mapping approximation”, IEEE Trans. Microw. Theory Tech., vol. MTT-12, pp. 280–289, May 1964.
[34] H. A. Wheeler, “Transmission-line properties of parallel strips separated by a dielectric sheet”, IEEE Trans. Microw. Theory Tech., vol. MTT-13, pp. 172–185, Mar. 1965.
[35] S.-G. Kim and K. Chang, “Ultrawide-band transitions and new microwave components using double-sided parallel-strip lines”, IEEE Trans. Microw. Theory Tech., vol. 52, no. 9, pp. 2148–2152, Sep. 2004.
[36] W. Che, L. Gu, and Y. L. Chow, “Formula derivation and verification of characteristic impedance for offset double-sided parallel strip line (DSPSL)”, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 6, pp. 304–306, Jun. 2010.

QR CODE