簡易檢索 / 詳目顯示

研究生: 葉子源
Tzu-Yuan Yeh
論文名稱: 一樓樓版先行無支撐擋土系統的特性之研究
A Study on the Characteristics of Strut-Free Excavation Retaining System with First-Floor Slabs
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 楊國鑫
Kuo-Hsin Yang
鄧福宸
Fu-Chen Teng
謝百鈎
Pio-Go Hsieh
林培元
Pei-Yan Lin
歐章煜
Chang-Yu Ou
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 132
中文關鍵詞: 無支撐開挖扶壁地中壁U壁樓版
外文關鍵詞: Strut-Free Excavation, Cross Wall, Buttress Wall, U-shape wall, Slab
相關次數: 點閱:271下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,無支撐擋土系統已逐漸成為開挖工程中另一種的選擇,相對於支撐擋土系統,它具有無可比擬的優勢。本文著重研究新穎一樓樓版先行無支撐擋土系統以及無支撐開挖系統在TPKE案例中的實際應用情況。TPKE案例是一個無支撐開挖的成功應用案例。此案例開挖深度為13.2 m,範圍約為 127 m × 105 m,屬於大範圍開挖工程。在設計過程中,考慮到節約成本和縮短工期,採用連續壁、扶壁、地中壁和環樑版的配置,進而設計出無支撐開挖擋土系統。此系統經三維有限元分析驗證是可行的。最終TPKE案例成功完成開挖,最大連續壁壁體變形與開挖深度比為0.25%,且分析結果與監測數據結果相吻合。然而,無支撐開挖系統的壁體變形呈現懸臂式位移,最大壁體變形位於壁體頂端,且壁體變形會有過大的疑慮。因此,本文提出另一種創新的無支撐擋土系統,即一樓樓版先行無支撐擋土系統。此系統由三個主要結構組成: 地中壁與扶壁組合的U壁、連續壁及地上一樓樓版。其最大的優點為可充分利用地上一樓樓版並取代鋼構工作台,且有效抑制連續壁頂端的壁體變形,適合於都市開挖。此外,在U壁間加入扶壁有助於降低開挖面上方的壁體變形,然而對於開挖面下方的壁體變形影響相對較小。此結果在假設案例和TPKE案例應用中均得到驗證。因此,在設計一樓樓版先行的無支撐擋土系統時,應將U壁間距作為主要考量因素,建議先確定合適的間距,再加入一道扶壁以有效改善壁體變形。


In recent years, the strut-free excavation retaining system has gradually become an alternative option in excavation engineering. This method offers distinct advantages compared to the traditional supported retaining wall system. This paper studies an innovative strut-free excavation retaining system with first-floor slabs and a strut-free excavation retaining system implemented in the TPKE project. TPKE project is a successful design of a strut-free excavation retaining system. The TPKE excavation project was 13.2 m deep, covering approximately 127 m × 105 m, considered an extensive excavation. Considering the cost savings and construction period shortening, the configurations of the diaphragm walls, buttress walls, cross walls, and the capping slab were used to design a strut-free excavation retaining system. This is feasible through the three-dimensional finite element analysis. This project was completed with the maximum diaphragm wall deflection to the excavation depth ratio of 0.25%. However, the wall deflection in the strut-free excavation system presents a cantilever-type displacement, with the maximum wall deflection occurring at the top of the wall, and there is a concern that the wall deformation might be excessive. Therefore, this paper introduces an innovative strut-free excavation system, namely a strut-free excavation retaining system with first-floor slabs. This system consists of three main components: U-Shaped walls, formed by the combination of cross walls and buttress walls, diaphragm walls, and the first-floor slab above ground. The significant advantage of this system is that it fully exploits the first-floor slab in place of a steel work platform and effectively controls the deformation of the top of the diaphragm wall, making this system suitable for urban excavation. Moreover, introducing buttress walls between the U-Shaped walls helps to reduce the wall deformation above the excavation face. In contrast, the impact on the wall deformation of the wall below the excavation face is relatively minor. This result has been validated in both the hypothetical and TPKE project. Therefore, the spacing between the U-Shaped walls should be a primary consideration when designing a strut-free excavation system with first-floor slabs. Determining an appropriate spacing first is recommended, then introducing a buttress wall to improve wall deformation effectively.

摘要 I ABSTRACT II 致謝 IV 目錄 VI 表目錄 IX 圖目錄 X 符號索引 XVI 第1章 緒論 1 1.1 研究動機及目的 1 1.2 研究方法及內容 1 1.3 論文架構 3 第2章 文獻回顧 4 2.1 前言 4 2.2 開挖引起的連續壁壁體的變形及地表沉陷的特性 4 2.2.1 連續壁壁體變形 4 2.2.2 地表沉陷 7 2.3 扶壁的應用 10 2.3.1 扶壁的型式 10 2.3.2 作用機制及應用 12 2.4 地中壁的應用 18 2.4.1 地中壁的型式 18 2.4.2 作用機制及應用 20 2.4.3 兩道地中壁相交施工方式 21 2.5 U壁的型式及應用 24 2.6 無支撐開挖 25 2.6.1 圓型連續壁作為無支撐開挖的應用 25 2.6.2 扶壁作為無支撐開挖的應用 27 2.6.3 RFD無支撐開挖系統 30 2.7 小結 34 第3章 無支撐開挖案例研究 35 3.1 前言 35 3.2 案例說明 35 3.2.1 現地及基地條件 35 3.2.2 設計理念 38 3.2.3 模型的幾何、網格和邊界條件 40 3.2.4 土壤參數決定 42 3.2.5 施工程序模擬 43 3.3 施工現場說明 46 3.3.1 現地開挖過程 46 3.3.2 監測數據與分析結果比較 48 3.4 參數研究 51 3.4.1 扶壁數量對連續壁壁體變形的影響 53 3.4.2 扶壁數量及扶壁長度對連續壁壁體變形的影響 55 3.4.3 扶壁長度對連續壁壁體變形的影響 55 3.4.4 扶壁在最終開挖面下的深度對連續壁壁體變形的影響 60 3.5 小結 60 第4章 一樓樓版先行無支撐擋土系統的特性之研究 61 4.1 前言 61 4.2 一樓樓版先行無支撐擋土系統 61 4.3 數值分析 65 4.4 參數研究 68 4.4.1 一樓樓版及不同扶壁處理的方式對連續壁壁體變形及地表沉陷的影響 70 4.4.2 系統對壁體變形及地表沉陷控制的因素 74 4.4.3 扶壁高度對連續壁壁體變形及地表沉陷的影響 77 4.4.4 扶壁長度對連續壁壁體變形及地表沉陷的影響 80 4.4.5 地中壁深度對連續壁壁體變形及地表沉陷的影響 82 4.4.6 開挖深度對連續壁壁體變形及地表沉陷的影響 84 4.4.7 基地長度對連續壁壁體變形的影響 93 4.4.8 U壁間距對連續壁壁體變形及地表沉陷的影響 98 4.5 小結 103 第5章 一樓樓版先行無支撐擋土系統對連續壁壁體變形的控制 105 5.1 前言 105 5.2 U壁間加入扶壁對連續壁壁體變形的影響 105 5.3 一樓樓版先行無支撐擋土系統應用於TPKE案例 114 5.3.1 一樓樓版先行無支撐擋土系統在TPKE案例中的應用 114 5.3.2 一樓樓版先行無支撐擋土系統在TPKE案例中的參數研究 119 5.4 小結 123 第6章 結論及建議 124 6.1 結論 124 6.2 建議 127 參考文獻 128

同豐營造工程(2019) 。「TPKE連續壁施工計畫」。
李承哲(2021)。「舊建物基礎改建既地下結構分析與應用」。碩士學位論文。國立台灣科技大學營建工程系研究所。
林亦郎(2011)。「地中壁對粘土層開挖變形影響之研究」。博士學位論文。國立台灣科技大學營建工程系研究所。
陳玫臻(2015)。「黏土層開挖引致連續壁側向位移之預測」。碩士學位論文。國立台灣科技大學營建工程系研究所。
陳韋豪(2020)。「探討不同扶壁處理方式對連續壁變形之影響」。碩士學位論文。國立台灣科技大學營建工程系研究所。
曾迪揚(2012)。「有效應力不排水深開挖分析之勁度探討」。碩士學位論文。國立台灣科技大學營建工程系研究所。
劉敏清(2023)。「逆打工程深開挖之變形預測及回饋分析」。碩士學位論文。國立台灣科技大學營建工程系研究所。
歐章煜(2017)。「進階深開挖工程分析與設計」。科技圖書。
鄧文賓(2013)。「扶壁對深開挖壁體變形影響之研究」。碩士學位論文。國立台灣科技大學營建工程系研究所。
謝百鈎(1999)。「黏土層深開挖引致地盤最大位移之預測」。博士學位論文。國立台灣科技大學營建工程系研究所。
ACI Committee 318 (1995). Building Code Requirements for Structural Concrete (ACI 318-95) and Commentary (ACI 318R-95). American Concrete Institute (ACI), Farmington Hills.
Bryson, L.S., & Zapata-Medina, D.G. (2012). Method for estimating system stiffness for excavation support walls. Journal of Geotechnical and Geoenvironmental Engineering, 138, 1104-1115.
Calvello, M., & Finno, R.J. (2004). Selecting parameters to optimize in model calibration by inverse analysis. Computers and Geotechnics, 31(5), 410–424.
Chuah, S.S., & Tan, S.A. (2010). Numerical study on a new strut-free counterfort embedded wall in Singapore. Earth Retention Conference, ASCE, 740-747.
Clough, G.W., & O’Rourke, T.D. (1990). Construction induced movements of insitu walls. Specialty Conf. on Design and Performance of Earth Retaining Structures, Geotechnical special publication 25, P. Lambe and L. A. Hansen, eds., ASCE, 439–470.
Dong, Y.P., Burd, H.J., & Houlsby, G.T. (2016). Finite-element analysis of a deep excavation case history. Géotechnique, 66(1), 1–15.
Hsieh, H.S., Huang, Y.H., Hsu, W.T., & Ge L. (2017). On the system stiffness of deep excavation in soft clay. Journal of GeoEngineering, 12(1), 21-34.
Hsieh, H.S., Wu, L.H., Lin, T.M., Cherng, J.C., & Hsu WT. (2011). Performance of T-shaped diaphragm wall in a large scale excavation. Journal of GeoEngineering, 6(3), 135-144.
Hsieh, P.G., & Ou, C.Y. (1998). Shape of ground surface settlement profiles caused by excavation. Canadian Geotechnical Journal, 35(6), 1004–1017.
Hsieh, P.G., & Ou, C.Y. (2018). Mechanism of buttress walls in restraining the wall deflection caused by deep excavation. Tunnelling and Underground Space Technology, 82, 542–553.
Hsieh, P.G., Ou, C.Y., & Hsieh, W.H. (2016). Efficiency of excavations with buttress walls in reducing the deflection of the diaphragm wall. Acta Geotechnica, 11(5), 1087–1102.
Hsieh, P.G., Ou, C.Y., Lin, Y.K., & Lu, F.C. (2015). Lesoons learned in design of an excavation with the installation of buttress walls. Journal of GeoEngineering, 10(2), 63-73.
Hsiung, B.C.B., Chung, L.J., & Lin, M.C. (2020). Case record of phase 1 of Kaohsiung metro –geotechnical design and construction of a large-scale underground station. Journal of GeoEngineering, 15(4), 205–214.
Hwang, R.N., & Moh, Z.C. (2008). Evaluating effectiveness of buttresses and cross walls by reference envelopes. Journal of GeoEngineering, 3(1), 1-11.
Jaky, J. (1944). The coefficient of earth pressure at rest. Journal for Society of Hungarian Architects and Engineers, 78(22), 355–358.
Jamsawang, P., Voottipruex, P., Tanseng, P., Jongpradist, P., & Bergado, D.T. (2019). Effectiveness of deep cement mixing walls with topdown construction for deep excavations in soft clay: case study and 3D simulation. Acta Geotech, 14(1), 225–246.
Khoiri, M., & Ou, C.Y. (2013). Evaluation of deformation parameter for deep excavation in sand through case histories. Computers and Geotechnics, 47(1), 57–67.
Lim, A. (2018). Investigation of Integrated Buttress and Cross Walls to Control Movements Induced by Excavation. Ph.D. Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
Lim, A., Hsieh, P.G., & Ou, C.Y. (2017). Evaluation of buttress wall shapes to limit movements induced by deep excavation. Computers and Geotechnics, 78, 155-170.
Lim, A., & Ou, C.Y. (2018). Performance and three-dimensional analyses of a wide excavation in soft soil with strut free retaining system. International Journal of Geomechanics, 18(9), 05018007.
Lim, A., & Ou, C.Y. (2020). Performance of cross and buttress walls to control wall deflection induced by deep excavation in dense urban area. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 51, 44–51.
Lim, A., Ou, C.Y., & Hsieh, P.G. (2010). Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. Journal of GeoEngineering, 5(1), 9–20.
Lim, A., Ou, C.Y., & Hsieh, P.G. (2018). Investigation of the integrated retaining system to limit deformations induced by deep excavation. Acta Geotechnica, 13, 973–995.
Lim, A., Ou, C.Y., & Hsieh, P.G. (2020). A novel strut-free retaining wall system for deep excavation in soft clay: numerical study. Acta Geotechnica, 15(6), 1557–1576.
Lin, P.Y., Lim, A., Ho, S.K., & Ho, S.P. (2018). Application of the novel composite earth retaining structure method to urban excavations: a constructability analysis. Journal of the Chinese Institute of Engineers, 41(7), 603–611.
Lin, P.Y., Chang, T.K., Ho, S.K., & Ho, S.P. (2017). Excavation without internal support and its implications in construction management: A case study. Journal of GeoEngineering, 12(2), 81–88.
Mu, L., & Huang, M. (2016). Small strain based method for predicting three-dimensional soil displacements induced by braced excavation. Tunnelling and Underground Space Technology, 52, 12–22.
Ou, C.Y. (2016). Finite Element Analysis of Deep Excavation Problems. Journal of GeoEngineering, 11(1), 1–12.
Ou, C.Y., Chiou, D.C., & Wu, T.S. (1996). Three-dimensional finite element analysis of deep excavations. Journal of Geotechnical Engineering, 122(5), 337–345.
Ou, C.Y., Hsieh, P.G., & Chiou, D.C. (1993). Characteristics of ground surface settlement during excavation. Canadian Geotechnical Journal, 30, 758–767.
Ou, C.Y., Hsieh, P.G., & Lin, Y.L. (2011). Performance of excavations with cross walls. Journal of Geotechnical and Geoenvironmental Engineering, 137(1), 94-104.
Ou, C.Y., Hsieh, P.G., & Lin, Y.L. (2013). A parametric study of wall deflections in deep excavations with the installation of cross walls. Computers and Geotechnics, 50, 55-65.
Ou, C.Y., & Hsieh, P.G. (2011). A simplified method for predicting ground settlement profiles induced by excavation in soft clay. Computers and Geotechnics, 38, 987-997.
Ou, C.Y., Liao, J.T., & Lin, H.D. (1998). Performance of diaphragm wall constructed using top-down method. Journal of Geotechnical and Geoenvironmental Engineering, 124, 798–808.
Ou, C.Y., Lin, Y.L., & Hsieh, P.G. (2006). Case record of an excavation with cross walls and buttress walls. Journal of GeoEngineering, 1(2), 79-86.
Ou, C.Y., Teng, F.C., Seed, R.B., & Wang, I.W. (2008). Using buttress walls to reduce excavation-induced movements. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 161(4), 209–222.
Peck, R.B. (1969). Deep excavation and tnneling in soft ground. Proceeding of 7th Int. Conf. on Soil Mechanics and Foundation Engineering, Univ. Nacional Autonoma de Mexico Instituto de Ingenira, Mexico City, 225–290.
Schanz, T., Vermeer, P.A., & Bonnier, P.G. (1999). Formulation and Verification of the Hardening-Soil model. Beyond 2000 in Computational Geotechnics: Brinkgreve ed, Rotterdam Balkema, 281-290.
Tan, Y., & Li, M. (2011). Measured performance of a 26 m deep topdown excavation in downtown Shanghai. Canadian Geotechnical Journal, 48(5), 704–719.
Wu, S.H., Ching, J,. & Ou, C.Y. (2013). Predicting Wall Displacements for Excavations with Cross Walls in Soft Clay. Journal of Geotechnical and Geoenvironmental Engineering, 139, 914-927.
Yeh, T.Y., Ou, C.Y., & Lim, A. (2022). A case study of strut-free excavation retaining system. Acta Geotechnica, 17, 5557–5571.
Zeng, C.F., Powrie, W., Xue, X.L., Li, M.K., & Mei, G.X. (2021). Effectiveness of a buttress wall in reducing retaining wall movement during dewatering before bulk excavation. Acta Geotechnica, 16, 3253–3267.
Zeng, C.F., Song, W.W., Xue, X.L., Li, M.K., Bai, N., & Mei, G.X. (2021). Construction dewatering in a metro station incorporating buttress retaining wall to limit ground settlement: Insights from experimental modelling. Tunnelling and Underground Space Technology, 116, 104124.
Zeng, C.F., Xue, X.L., Li, & M.K. (2021). Use of cross wall to restrict enclosure movement during dewatering inside a metro pit before soil excavation. Tunnelling and Underground Space Technology, 112, 103909.

QR CODE