簡易檢索 / 詳目顯示

研究生: 黃祥銘
Xiang-Ming Huang
論文名稱: 鐵-13錳-3鋁-0.5碳合金鋼共析反應研究
The study of eutectoid reaction of Fe-13Mn-3Al-0.5C alloy
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
雷添壽
Tien-Shou Lei
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 97
中文關鍵詞: 相變化時效TEM
外文關鍵詞: Phase transformation, Aging, TEM
相關次數: 點閱:194下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    本論文研究鐵-13.4錳-3.0鋁-0.63碳(wt%)合金的共析反應相變化。合金於1100至650℃時為單一沃斯田體相。而合金經過625℃以下的恆溫的熱處理後,層狀肥粒體及M23C6碳化物晶粒所組成的波來體組織析出於沃斯田體的晶粒內。此種相變化的型式具有共析反應的特徵,其相變化的型式為:γ → α + M23C6。而共析反應的溫度應該介於650至625℃之間。
    於TEM-EDS分析合金內組成相的成份,發現波來體組織內的M23C6碳化物含有極高的錳含量。且M23C6碳化物的錳含量是於575℃時為最高,而於600及625℃的溫度時,其內的錳含量有隨溫度的上升而有降低的趨勢。分析波來體組織內的肥粒體晶粒,其所含金屬組成是低錳與高鋁含量;此結果符合於鐵基金屬中的通則:錳為沃斯田體相的穩定元素,而鋁為肥粒體相的穩定元素。
    以TEM擇區繞射圖觀察波來體組織,發現肥粒體和鄰近的M23C6碳化物有以下四種的方位關係:(1)為[01 ‾1]α//[1 ‾1 ‾2]C6C6,(011)α//(111)C6及(2 ‾00)α//(22 ‾0)C6;(2)為[111]α//[011 ‾]C6,(11 ‾0)α//(111)C6,此為K-S方位關係;(3)為[112]α//[112]C6,(11 ‾0)α//(111 ‾)C6及(2 ‾2 ‾0)α//(22 ‾0)C6;而(4)為[122]α//[011]C6,(01 ‾1)α//(111 ‾)C6。而(4)的方位關係為本論文首次發現。


    ABSTRACT

    We have studied an eutectoid reaction of an Fe-Mn-Al steel. The composition of the steel is Fe-13.4Mn-3.0Al-0.63C(wt%). The steel is composed of only austenite at temperatures between 1100 and 650℃. Being solution treated at 1100℃ and aged at temperatures below 625℃, an eutectoid reaction was found in the austenitic matrix, with a pearlite structure consisting of ferrite and M23C6 carbide layers. The eutectoid reaction features: γ → α + M23C6. The eutectoid reaction temperature was found between 625 to 650℃.
    In the analysis of the steel composition, the M23C6 carbide in the pearlite structure contains high manganese content. The Mn constituent of the M23C6 carbide decreases as the temperature of the aging process increases for the temperature ranging from 575 to 625℃. The ferrite in the pearlite structure contains lower manganese and higher aluminum contents. It is consistent with a principle of ferritic alloys: the manganese is a stabilizer for austenite, while the aluminum for ferrite, respectively.
    We have discovered several orientation relationships between the ferrite and M23C6 carbide as following: [01 ‾1]α//[1 ‾1 ‾2]C6, (011)α//(111)C6 and (2 ‾00)α//(22 ‾0)C6; [111]α//[011 ‾]C6,(11 ‾0)α//(111)C6, this is a K-S orientation relationship; [112]α//[112]C6, (11 ‾0)α//(111 ‾)C6 and (2 ‾2 ‾0)α//(22 ‾0)C6; [122]α//[011]C6,(01 ‾1)α//(111 ‾)C6. The last one is the first time to reveal in the literature.

    目 錄 第一章 前 言1 第二章 文獻回顧4 2.1 固態相變化 (solidifaction)4 2.2 鐵錳碳合金的共析反應6 2.3 合金鋼中的碳化物6 2.4 立方晶中的K-S與N-W方位關係8 2.5 鐵基合金中的M23C6碳化物8 第三章 實驗方法25 3.1 合金熔煉25 3.2 鑄錠加工26 3.3 合金熱處理26 3.4 試片製作27 3.5 分析儀器30 第四章 結果與討論37 4.1 持溫熱處理38 4.2 共析反應44 4.3 波來體組織中α與碳化物之方位關係47 第五章 結論88 參考文獻91 附 錄 94

    參考文獻
    1.Donald R. Askeland Pradeep P. Phule, The science and engineering of materials.
    2.C.R. Hutchinson and G.J. Shiflet, Scripta Meterialia, 50, 1 (2004)
    3.蘇文淵,”鐵-30.1錳-0.64碳合金鋼之持溫相變化研究”,國立台灣科技大學,碩士論文(2008)。
    4.張育仁,”鐵-30錳-1.7鋁-1碳合金鋼之持溫相變化研究”,國立台灣科技大學,碩士論文(2008)。
    5.C.J. Wang, Y.C. Chang, Materials Chemistry and Physics 76 (2002) 151–161
    6.Hadfield manganese steel http://www.answers.com/topic/hadfield-manganese-steel
    7.K.I., H.O., N.S, R.K. and T.N,ISIJ International, Vol. 30 (1990), No. 8, pp. 680-686
    8.D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 3/e, 2008.
    9.Zenji Nishiyama,”Martensitic Transformation”, pp.12, (1978).
    10.W. B. Lee, F.R. Chen, S. K. Chen, G. B. Olson, C. M. Wan
    11.游智鈞”鐵-21錳-0.4碳合金之相變化研究”國立台灣科技大學,碩士論文(2007)
    12.林東一 “鐵-21錳-0.5碳合金之麻田散體相變化研究”國立台灣科技大學,碩士論文(2007)
    13.In: Martensite: Fundamentals and technology. Ed. E.R. Petty. Longmans. 1970
    14.A.J. Boger, W.G. Burgers, Acta Metallurgica, 12, 255 (1964) .
    15.L.Bracke, L.Kestens, Scripta Meterialia, 57, 385 (2007) .
    16.E.Bayraktar, F.A. Khalid, Journal of Materials Processing Technology, 147, 145 (2004) .
    17.B.Cina, Acta Metallurgica, 6, 748 (1958) .
    18.P.M. Kelly, Acta Metallurgica, 13, 635 (1965) .
    19.C.R. Hutchinson, G.J. Shiflet, Scripta Materialia., 50, pp.1-5(2004).
    20.C.R. Hutchinson, R.E. Hackenberg, G. J. Shiflet, Acta Mat. 52, 3565-3585 (2004).
    21.K.H. Kuo, C.L. Jia, Acta Metall., 33, No.6, 991 (1985).
    22.P.R. Howell, J.V. Bee, R.W. K. Honeycombe, Metall. Trans. A, 10A, 1213 (1979).
    23.W.F. Smith, Structure and Properties of Engineering Alloys, 2/e, 1 (1993).
    24.M. Vach, T. Kunikova, Material Charact., 59, 1792 (2008).
    25.Modelling carbide precipitation in alloy steels. Nobuhiro Fujita Drawin College, Cambridge, February 2000.
    26.V.R, Phase Diagrams of Ternary Iron Alloys
    27.K.H. Kuo, C.L. Jia, Acta Metall., 33, No.6, 991 (1985).
    28.P.R. Howell, J.V. Bee, R.W. K. Honeycombe, Metall. Trans. A, 10A, 1213 (1979).
    29.M.H. Lewis, B.Hattersley, Acta Metall., 13, 1159 (1965).
    30.L.K. Singhal, J.W. Martin, Acta Metall., 16, 1159 (1968).
    31.B.Weiss, R. Stickler, Metall. Trans., 3, 851 (1972).
    32.J.B. Lupton, S. Murphy, J.H. Woodhead, Metall. Trans., 3, 2923 (1972).
    33.K.Campbell, R.W.K. Honeycombe, Metal Sci., 8, 197 (1974).
    34.R.W.K. Honeycombe, R.F. Mehl, Metall. Trans. A, 7A, 915 (1976).
    35.A. Boeuf, R. Caciuffo, S. Crico, Mat. Letters, 2, No.1, 49 (1983).
    36.E. Kozeschnik and J.M. Vitek, Calphad 24 (2000), p. 495.
    37.http://www.thomas-sourmail.org/stainless/index.html
    38.Y.L. Lin, C.P. Chou, Scripta Metall., 27, 67 (1992).
    39.鮑忠興、劉思謙,現代穿透式電子顯微鏡實務,滄海書局,ISBN 978-986-6689-53-0
    40.戈元,”鐵-12錳-4鋁-0.5碳合金相變化之研究”,國立台灣科技大學,碩士論文(2007)。
    41.薛凱云,”鐵-12錳-4鋁-0.5碳合金鋼之亞共析反應研究”,國立台灣科技大學,碩士論文(2007)。
    42.陳致豪,”鐵-30錳-0.3碳合金鋼之持溫相變化研究”,國立台灣科技大學,碩士論文(2008)。

    QR CODE