簡易檢索 / 詳目顯示

研究生: 周立維
Li-wei Chou
論文名稱: 利用拉曼光譜儀和理論計算對反式-二苯乙烯吸附在銀-鍺半導體表面所具有的表面效應研究
Surface Raman spectroscopy and theoretical calculation of trans-sitlbene on Ag/Ge(111): surface-induced effects
指導教授: 江志強
Jyh-Chiang Jiang
林景泉
Jiing-Chyuan Lin
王俊凱
Juen-Kai Wang
口試委員: 魏金明
Ching-Ming Wei
王玉麟
Yuh-Lin Wang
劉進興
Chin-Hsin J Liu
戴龑
Yian Tai
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 95
中文關鍵詞: 拉曼光譜儀第一原理計算二苯乙烯銀-鍺半導體表面
外文關鍵詞: Raman spectroscopy, Density functional theory, stilbene, Ag/Ge(111)
相關次數: 點閱:336下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

The aim of this study attempts to explore the surface effect imposed on the self-organized overlayer trans-stilbene (C14H12) on the silver-covered semiconductor surface, Ag/Ge(111), at ~100K under the ultra-high vacuum environment. Serving as a prototype molecule for investigating the trans-cis isomerization, trans-stilbene lying flat on the surface was found to be isomerized to the cis-form via a pair-wise fashion under UV-photon irradiation. Intense interest has arisen regarding how adsorbed trans-stilbene on the surface prepares for undergoing the photoisomerization, which is expected to differ from the one in gas and liquid phases. To thoroughly shed light upon this issue, this research adopted a joint experimental and theoretical approach in examining the surface and adsorbate characteristics with scanning tunneling microscopy (STM), surface Raman scattering, density functional theory (DFT) calculation and so on.
Results of these investigations let us to re-characterize the silver-germanium coexisting layer whose the most stable structure appears to be the hexagonal pattern in the STM image, instead of the well-known honeycomb pattern. To understand the STM images, the simulated electronic density distribution based on the periodic DFT calculation indicates that alternating bright and dark protrusions in the r3xr3 unit cell, referring to the hexagonal pattern, represent two silver trimers with different sizes. Furthermore, with trans-stilbene overlayer on the surface, large silver trimers are calculated to be an energetically favored adsorption sites for anchoring the benzoic moiety. A considerable interaction between the trans-stilbene and the silver trimers can be expected and have been examined by Raman spectroscopy. Self-organized submonolayer of trans-stilbene on Ag/Ge(111) yields a significant red shift in the C=C stretching of the olefinic group at 1625 cm-1 and enhanced Raman activity of the peak at 1568 cm-1 for phenyl ring stretching as compared to the corresponding one of a multilayer trans-stilbene. Electronic interaction between trans-stilbene and the underneath surface together with Raman spectra were calculated using the density functional theory. The calculated Raman spectra are in good agreement with the experimental results, supporting the calculated molecular geometry of the adsorbed trans-stilbene which exhibits a predominant bond elongation in the olefinic group and an molecular planarity. The analysis of the partial density of states shows that the lowest unoccupied molecular orbital is broadened and lowered to cross the surface Fermi level by the interaction with the surface, facilitating surface charge transfer and thus destabilizing the C=C double bond. In addition, self-organized overlayer of trans, trans-distyrylbenzene (C22H18, with one additional repeat unit of phenylenevinylene to stilbene) and trans-azobenzene (C12H10N2) on the surface have also been investigated. We found the similar adsorption behaviors for these two molecules as for trans-stilbene in interacting with the surface.


本研究主要的目地在於了解超高真空環境且在-173°C下自我組裝反式-二苯乙烯分子層(self-organized trans-stilbene overlayer)吸附在單層銀覆蓋鍺半導體(Ag/Ge(111))所具有的表面效應(surface effect)。二苯乙烯為異構化反應的簡單原型,已被廣泛的研究超過五十年。近年來我們將反式-二苯乙烯氣態分子單層吸附於金屬半導體表面上,發現它不但能夠整齊排列在表面上並且可以被光激發形成雙激子(bi-exciton)進行光異構化反應而產生順式-二苯乙烯。此發現引起我們對於在表面效應影響下的反式-二苯乙烯是如何準備異構化反應產生更進一步的興趣,並認為其性質可能不同於液相或氣相。為深入了解反式-二苯乙烯吸附行為,本研究結合掃描式穿隧顯微鏡和拉曼光譜儀的實驗觀測和第一原理模擬的計算方法,來探討吸附物和表面的性質以及之間的作用。
在表面形態的實驗觀測和理論模擬上,我們發現一最穩定銀-鍺表面結構存在週期排列的六面體圖案(hexagonal pattern)而不是過去所認為的蜂窩狀組織(honeycomb pattern)。經計算所得的最適化表面結構指出明暗影像(六面體圖案)在表面晶胞(surface unit cell)中是由二種不同大小的三聚銀(silver trimer)所構成。進一步計算吸附物在表面上的研究指出大的三聚銀是反式-二苯乙烯中苯官能基的吸附位置。此結果可以想見銀原子為表面扮演著重要的角色影響反式-二苯乙烯分子。在吸附分子—反式-二苯乙烯分子的拉曼振動實驗,我們觀察比較大約單層和多層的反式-二苯乙烯分子所具有不同的振動光譜特徵。我們發現與表面直接作用的反式-二苯乙烯分子其雙鍵拉伸振動產生一明顯紅移約在頻譜位置1625 cm-1 ,另外苯環拉伸振動的頻譜位置1568 cm-1強度也被增強。經由理論模擬表面效應及其吸附物的拉曼光譜計算,我們發現與實驗一致的結果並確認其光譜變化源自吸附的反式-二苯乙烯分子受到表面效應而改變其電子組態進而影響分子的結構。相較於未吸附的反式-二苯乙烯,結構最佳化的反式-二苯乙烯吸附在表面上呈現較長的碳碳雙鍵 (olefinic moiety) 和較扭曲的分子平面。根據吸附系統的電子組態分析,得知最低未填滿分子能階分佈變寬且朝向低能量位移並跨過表面費米能階(Surface Fermi level)而呈現部分填滿的狀態. 故我們認為吸附反式-二苯乙烯結構和對應的拉曼光譜變化起因於表面電子轉移到反式-二苯乙烯的最低未填滿分子能階 (lowest unoccupied molecular orbital, LUMO)。最後,我們也使用相同的實驗觀測和理論模擬探討另二種可自我組裝分子的吸附行為:反,反式-對苯二乙烯和反式-偶氮苯,發現均有類似反式-二苯乙烯的吸附行為和拉曼頻譜位移的現象。

摘要 I Abstract III 誌謝 V Table of contents VI List of Figure IX List of Table XIII Chapter 1 1-1 Introduction 1.1 Organic adlayer on the surface 1-1 1.2 Photoisomerization 1-1 1.3 Stilbene 1-2 1.4 Surface effects imposed on molecular adlayers 1-4 1.5 Raman spectroscopy and Density functional theory 1-6 1.6 Overview 1-8 Reference 1-11 Figure for Chapter 1 1-14 Chapter 2 2-1 Methodology Section I: Experimental apparatus 2.1 Scanning Tunneling Microscopy 2-1 2.2 Raman spectroscopy and fluorescence spectroscopy 2-1 2.3 Sample preparation 2-3 2.3.1 Ag/Ge(111) surface 2-3 2.3.2 Self-organized monolayer of Stilbene on the surface 2-4 Methodology SectionⅡ: Density functional theory calculation 2.4 Vienna ab initio simulation package 2-4 2.4.1 Ag/Ge(111) Surface 2-4 2.4.2 Trans-stilbene on the Ag/Ge(111) Surface 2-5 2.5 Gaussian 03 package 2-6 Reference 2-7 Figure for Chapter 2 2-8 Chapter 3 3-1 Atomic Structure of the Ag/Ge(111) surface 3.1 Introduction 3-1 3.2 Result and Discussion 3-3 3.3 Conclusion 3-10 Reference 3-12 Figure and Table for Chapter 3 3-14 Chapter 4 4-1 Surface Raman spectroscopy of trans-stilbene on the Ag/Ge(111): Surface-induced effects 4.1 Introduction 4-1 4.2 Result and Discussion 4-3 4.3 Conclusions 4-11 References 4-13 Figure and Table for Chapter 4 4-15 Appendix A-1 Surface effects imposed on switchable molecules on the Ag/Ge(111): trans, trans-distyrylbenzene and trans-azobenzene

(1.1) Madueno, R.; Raisanen, M. T.; Silien, C.; Buck, M. Nature 2008, 454, 618.
(1.2) Eremtchenko, M.; Schaefer, J. A.; Tautz, F. S. Nature 2003, 425, 602.
(1.3) Schon, J. H.; Meng, H.; Bao, Z. Nature 2001, 413, 713.
(1.4) Berger, R.; Delamarche, E.; Lang, H. P.; Gerber, C.; Gimzewski, J. K.; Meyer, E.; Guntherodt, H.-J. Science 1997, 276, 2021.
(1.5) Barth, J. V.; Weckesser, J.; Trimarchi, G.; Vladimirova, M.; De Vita, A.; Cai, C.; Brune, H.; Gunter, P.; Kern, K. J. Am. Chem. Soc. 2002, 124, 7991.
(1.6) Waldeck, D. H. Chem. Rev. 1991, 91, 415.
(1.7) Syage, J. A.; Felker, P. M.; Zewail, A. H. J. Chem. Phys. 1984, 81, 4706.
(1.8) Saltiel, J.; Waller, A. S.; Sears Jr, D. F. J. Am. Chem. Soc. 1993, 115, 2453.
(1.9) Natansohn, A.; Rochon, P. Chem. Rev. 2002, 102, 4139.
(1.10) Rau, H. Photochemistry and Photophysics; CRC Press: Boca Raton, FL, 1990; Vol. 2.
(1.11) Dri, C.; Peters, M. V.; Schwarz, J.; Hecht, S.; Grill, L. Nat Nano 2008, advanced online publication.
(1.12) Tsai, C. S.; Wang, J. K.; Skodje, R. T.; Lin, J. C. J. Am. Chem. Soc. 2005, 127, 10788.
(1.13) Comstock, M. J.; Levy, N.; Kirakosian, A.; Cho, J.; Lauterwasser, F.; Harvey, J. H.; Strubbe, D. A.; Frechet, J. M. J.; Trauner, D.; Louie, S. G. Phys. Rev. Lett. 2007, 99, 38301.
(1.14) Alemani, M.; Peters, M. V.; Hecht, S.; Rieder, K. H.; Moresco, F.; Grill, L. J. Am. Chem. Soc. 2006, 128, 14446.
(1.15) Choi, B. Y.; Kahng, S. J.; Kim, S.; Kim, H.; Kim, H. W.; Song, Y. J.; Ihm, J.; Kuk, Y. Phys. Rev. Lett. 2006, 96, 156106.
(1.16) Joachim, C.; Gimzewski, J. K.; Aviram, A. Nature 2000, 408, 541.
(1.17) Hugel, T.; Holland, N. B.; Cattani, A.; Moroder, L.; Seitz, M.; Gaub, H. E. Science 2002, 296, 1103.
(1.18) Ramachandran, G. K.; Hopson, T. J.; Rawlett, A. M.; Nagahara, L. A.; Primak, A.; Lindsay, S. M. Science 2003, 300, 1413.
(1.19) Donhauser, Z. J.; Mantooth, B. A.; Kelly, K. F.; Bumm, L. A.; Monnell, J. D.; Stapleton, J. J.; Price, D. W., Jr.; Rawlett, A. M.; Allara, D. L.; Tour, J. M.; Weiss, P. S. Science 2001, 292, 2303.
(1.20) Lastapis, M.; Martin, M.; Riedel, D.; Hellner, L.; Comtet, G.; Dujardin, G. Science 2005, 308, 1000.
(1.21) Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098.
(1.22) Tsai, C. S.; Su, C.; Wang, J. K.; Lin, J. C. Langmuir 2003, 19, 822.
(1.23) Vattuone, L.; Valbusa, U.; Rocca, M. Phys. Rev. Lett. 1999, 82, 4878.
(1.24) Zinola, C. F.; Castro Luna, A. M. J. Electroanal. Chem. 1998, 456, 37.
(1.25) Avouris, P.; Demuth, J. E. J. Chem. Phys. 1981, 75, 4783.
(1.26) Dudde, R.; Frank, K. H.; Koch, E. E. Surf. Sci. 1990, 225, 267.
(1.27) Itoh, K.; Kiyohara, T.; Shinohara, H.; Ohe, C.; Kawamura, Y.; Nakai, H. J. Phys. Chem. B 2002, 106, 10714.
(1.28) Kokalj, A.; Dal Corso, A.; de Gironcoli, S.; Baroni, S. J. Phys. Chem. B 2002, 106, 9839.
(1.29) Raval, R. Surf. Sci. 1995, 331, 1.
(1.30) Anderson, A. B.; McDevitt, M. R.; Urbach, F. L. Surf. Sci. 1984, 146, 80.
(1.31) Moskovits, M.; DiLella, D. P. J. Chem. Phys. 1980, 73, 6068.
(1.32) Avpros, P.; Demuth, J. E. Surf. Sci. 1985, 158, 21.
(1.33) Held, G.; Braun, W.; Steinrk, H. P.; Yamagishi, S.; Jenkins, S. J.; King, D. A. Phys. Rev. Lett. 2001, 87, 216102.
(1.34) Hauschild, A.; Karki, K.; Cowie, B. C. C.; Rohlfing, M.; Tautz, F. S.; Sokolowski, M. Phys. Rev. Lett. 2005, 94, 036106.
(1.35) Tautz, F. S. Prog. Surf. Sci. 2007, 82, 479.
(1.36) Ovari, L.; Wolf, M.; Tegeder, P. J. Phys. Chem. C 2007, 111, 15370.
(1.37) John T. Yates, J.; Mandey, T. E. Vibrational Spectroscopy of Molecules on Surface; Plenum Press,New York, NY, 1987.
(1.38) Kolasinski, K. W. Surface Science; John Wiley & Sons Ltd, 2002.
(1.39) Koch, W.; Holthausen, M. C. A chemist's guide to density functional theory; 2 ed.; Wiley-VCH, 2001.
(1.40) Kaltsoyannis, N.; McGrady, J. E. Principles and Applications of Density Functional Theory in Inorganic Chemistry Springer, 2004.
(1.41) Hoffmann, R. Solids and Surfaces: A Chemist's View of Bonding in Extended Structures; Wiley-VCH, 1989.
(1.42) Dronskowski, R. Computational chemistry of solid state materials : a guide for materials scientists, chemists, physicists and others; Wiley-VCH, 2005.
(2.1) Chance, R. R.; Prock, A.; Silbey, R. Adv. Chem. Phys 1978, 37, 65.
(2.2) Watanabe, H.; Okamoto, Y.; Furuya, K.; Sakamoto, A.; Tasumi, M. J. Phys. Chem. A 2002, 106, 3318.
(2.3) Wu, H. C.; Chou, L. W.; Wang, L. C.; Lee, Y. R.; Wei, C. M.; Jiang, J. C.; Su, C.; Lin, J. C. J. Phys. Chem. C 2008, 112, 14464.
(2.4) Tsai, C. S.; Su, C.; Wang, J. K.; Lin, J. C. Langmuir 2003, 19, 822.
(2.5) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
(2.6) Kresse, G.; Hafner, J. Comput. Mater. Sci. 1993, 6, 15.
(2.7) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169.
(2.8) Pickett, W. E. Comput. Phys. Rep 1989, 9, 33.
(2.9) Kresse, G.; Hafner, J. J. Phys.: Condens. Matter 1994, 6, 8245.
(2.10) Frisch, M. J.; et al. Gaussian 03, revision B. 04 Gaussian Inc.: Pittsburgh PA, 2003.
(2.11) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
(2.12) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(3.1) Spence, D. J.; Tear, S. P. Surf. Sci. 1998, 398, 91.
(3.2) Hammar, M.; Gothelid, M.; Karlsson, U. O.; Flodstrom, S. A. Phys. Rev. B 1993, 47, 15669.
(3.3) Zhang, H. M.; Uhrberg, R. I. G. Surf. Sci. 2003, 546, L789.
(3.4) Sato, N.; Nagao, T.; Hasegawa, S. Surf. Sci. 1999, 442, 65.
(3.5) Zhang, H. M.; Gustafsson, J. B.; Johansson, L. S. O. Phys. Rev. B 2006, 74, 201304.
(3.6) Huang, H.; Over, H.; Tong, S. Y.; Quinn, J.; Jona, F. Phys. Rev. B 1994, 49, 13483.
(3.7) Zhang, H. M.; Balasubramanian, T.; Uhrberg, R. I. G. Phys. Rev. B 2001, 63, 195402.
(3.8) Sasaki, N.; Watanabe, S.; Aizawa, H.; Tsukada, M. Surf. Sci. 2001, 493, 188.
(3.9) Sasaki, N.; Watanabe, S.; Tsukada, M. Phys. Rev. Lett. 2002, 88, 046106.
(3.10) Tajiri, H.; Sumitani, K.; Nakatani, S.; Nojima, A.; Takahashi, T.; Akimoto, K.; Sugiyama, H.; Zhang, X.; Kawata, H. Phys. Rev. B 2003, 68, 035330.
(3.11) Uhrberg, R. I. G.; Zhang, H. M.; Balasubramanian, T.; Landemark, E.; Yeom, H. W. Phys. Rev. B 2002, 65, 081305.
(3.12) Matsuda, I.; Morikawa, H.; Liu, C.; Ohuchi, S.; Hasegawa, S.; Okuda, T.; Kinoshita, T.; Ottaviani, C.; Cricenti, A.; Dangelo, M.; Soukiassian, P.; Le Lay, G. Phys. Rev. B 2003, 68, 085407.
(3.13) Fukaya, Y.; Kawasuso, A.; Ichimiya, A. Phys. Rev. B 2007, 75, 115424.
(3.14) Kaji, H.; Kakitani, K. Surf. Sci. 2007, 601, 2491.
(3.15) Ding, Y. G.; Chan, C. T.; Ho, K. M. Phys. Rev. Lett. 1991, 67, 1454.
(3.16) Kakitani, K.; Yoshimori, A.; Aizawa, H.; Tsukada, M. Surf. Sci. 2001, 493, 200.
(3.17) Aizawa, H.; Tsukada, M.; Sato, N.; Hasegawa, S. Surf. Sci. 1999, 429, L509.
(3.18) Jeong, H.; Yeom, H. W.; Jeong, S. Phys. Rev. B 2007, 76, 085423.
(3.19) Tsai, C. S.; Su, C.; Wang, J. K.; Lin, J. C. Langmuir 2003, 19, 822.
(3.20) Nakamura, Y.; Kondo, Y.; Nakamura, J.; Watanabe, S. Surf. Sci. 2001, 493, 206.
(3.21) Kazuyuki, S.; Toshihiro, S.; Kenji, M.; Keisuke, K.; Jun, O.; Kanta, O.; Nobuo, U.; Masaharu, O. Phys. Rev. B 2006, 73, 193303.
(3.22) Wu, H. C.; Tsai, C. S.; Chou, L. W.; Lee, Y. R.; Jiang, J. C.; Su, C.; Lin, J. C. Langmuir 2007, 23, 12521.
(3.23) Fan, W. C.; Ignatiev, A. Phys. Rev. B 1989, 40, 5479.
(3.24) Gohelid, M.; Hammar, M.; Karlsson, U. O.; Wigren, C.; LeLay, G. Phys. Rev. B 1995, 52, 14104.
(3.25) Metcalfe, F. L.; Venables, J. A. Surf. Sci. 1996, 369, 99.
(3.26) Venables, J. A.; Sugawara, A.; Metcalfe, F. L. Surf. Sci. 1997, 371, 420.
(4.1) Waldeck, D. H. Chem. Rev. 1991, 91, 415.
(4.2) Syage, J. A.; Felker, P. M.; Zewail, A. H. J. Chem. Phys. 1984, 81, 4706.
(4.3) Syage, J. A.; Felker, P. M.; Zewail, A. H. J. Chem. Phys. 1984, 81, 4685.
(4.4) Sension, R. J.; Repinec, S. T.; Szarka, A. Z.; Hochstrasser, R. M. J. Chem. Phys. 1993, 98, 6291.
(4.5) Courtney, S. H.; Fleming, G. R. J. Chem. Phys. 1985, 83, 215.
(4.6) Saltiel, J.; Waller, A. S.; Sears Jr, D. F. J. Am. Chem. Soc. 1993, 115, 2453.
(4.7) Tsai, C. S.; Wang, J. K.; Skodje, R. T.; Lin, J. C. J. Am. Chem. Soc. 2005, 127, 10788.
(4.8) Gorner, H.; Kuhn, H. J. Adv. Photochem 1995, 19, 1.
(4.9) Han, W.-G.; Lovell, T.; Liu, T.; Noodleman, L. ChemPhysChem 2002, 3, 167.
(4.10) Banares, L.; Heikal, A. A.; Zewail, A. H. J. Phys. Chem. 1992, 96, 4127.
(4.11) Yates, J. T., Jr.; Madey, T. E. Vibrational spectroscopy of molecules on surfaces; Plenum Press,New York, NY: United States, 1987.
(4.12) Tautz, F. S.; Eremtchenko, M.; Schaefer, J. A.; Sokolowski, M.; Shklover, V.; Umbach, E. Phys. Rev. B 2002, 65, 125405.
(4.13) Tautz, F. S. Prog. Surf. Sci. 2007, 82, 479.
(4.14) Ovari, L.; Wolf, M.; Tegeder, P. J. Phys. Chem. C 2007, 111, 15370.
(4.15) Suetaka, W. Surface Infrared and Raman Spectroscopy: Methods and Applications; Springer, 1995.
(4.16) Wang, J. K.; Tsai, C. S.; Lin, C. E.; Lin, J. C. J. Chem. Phys. 2000, 113, 5041.
(4.17) Bree, A.; Edelson, M. Chem. Phys. 1980, 51, 77.
(4.18) Chance, R. R.; Prock, A.; Silbey, R. Adv. Chem. Phys 1978, 37, 65.
(4.19) Watanabe, H.; Okamoto, Y.; Furuya, K.; Sakamoto, A.; Tasumi, M. J. Phys. Chem. A 2002, 106, 3318.
(4.20) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.
(4.21) Kono, S.; Higashiyama, K.; Kinoshita, T.; Miyahara, T.; Kato, H.; Ohsawa, H.; Enta, Y.; Maeda, F.; Yaegashi, Y. Phys. Rev. Lett. 1987, 58, 1555
(4.22) Ogawa, K.; Sano, T.; Yoshimura, S.; Takeuchi, Y.; Toriumi, K. J. Am. Chem. Soc. 1992, 114, 1041.
(4.23) Ogawa, K.; Suzuki, H; Futakami, M. J. Chem. Soc. Perkin Trans Ⅱ 1988, 39
(4.24) Dewar, M. J. S. Bull Soc Chim France 1951, 18, C79.
(4.25) Chatt, J.; Duncanson, L. A. J. Chem. Soc 1953, 2939.
(4.26) Itoh, K.; Kiyohara, T.; Shinohara, H.; Ohe, C.; Kawamura, Y.; Nakai, H. J. Phys. Chem. B 2002, 106, 10714.
(4.27) Kokalj, A.; Dal Corso, A.; de Gironcoli, S.; Baroni, S. J. Phys. Chem. B 2002, 106, 9839.
(4.28) Raval, R. Surf. Sci. 1995, 331, 1.
(4.29) Arenas, J. F.; Tocon, I. L.; Otero, J. C.; Marcos, J. I. J. Phys. Chem. 1995, 99, 11392.

QR CODE