簡易檢索 / 詳目顯示

研究生: 胡晧霆
Hau-ting Hu
論文名稱: 以反應式離子束濺鍍法成長氧化鋅鎂薄膜
Growth and characterization of MgZnO thin films prepared by reactive ion beam sputtering
指導教授: 趙良君
Liang -Chiun Chao
口試委員: 黃鶯聲
Ying-Sheng Huang
莊敏宏
Miin-Horng Juang
李奎毅
Kuei-yi LEE
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 59
中文關鍵詞: 氧化鋅鎂離子束濺鍍
外文關鍵詞: MgZnO, ion beam sputtering
相關次數: 點閱:256下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

使用反應式離子束濺鍍法成長氧化鋅鎂薄膜已成功的被製作。本論文將使用反應氣體氧氣參與離子束濺鍍Mg0.1Zn0.9金屬靶材,以(111)矽基板溫度360、400及500℃成長氧化鋅鎂薄膜MgxZn1-xO並討論其特性。在基板溫度360℃及400℃成長氧化鋅鎂,由FESEM觀察切面與表面,氧化鋅鎂緻密的堆積成平坦的薄膜;當基板溫度為500℃時,氧化鋅鎂表面是以島狀結構向上成長。XRD的量測,得知薄膜沿著(002)方向成長氧化鋅鎂,晶格常數c軸長度隨著Mg加入而縮短,由氧化鋅粉末的5.2066 Å縮短為約5.1816 Å。XPS分析各薄膜中O 1s的鍵結氧在90%以上,由各元素成分比,得到比例約為Mg0.26Zn0.74O。室溫PL紫外光發光位置(~340 nm)有明顯的藍移現象,在基板溫度400℃下成長,可得到最佳的PL光譜,綠光缺陷與紫外光比值Idefect/Iuv約為0.2,紫外光發光佔總光譜面積約83%。AFM分析薄膜均方根表面粗糙度約1 nm。以低成本的方式在離子源加入氧氣參與濺鍍,成功的製作氧化鋅鎂薄膜,並在基板溫度400℃成長可以得到較佳的薄膜特性,主要成長方向(002),有較好的PL發光光譜及較小的薄膜表面粗糙度。


MgZnO thin films have been deposited on Si (111) substrates at 360, 400 and 500C by reactive ion beam sputtering deposition utilizing a Mg0.1Zn0.9 alloy target. The MgZnO films were analyzed by SEM, XRD, XPS and AFM. All the films were found grown along the (002) direction. The c-axis constant of the MgZnO film is 5.1816 Å shorter than that of powder ZnO (5.2066 Å) which is due to the incorporation of Mg that has an ionic radius less than that of Zn. The composition of the as-deposited film was found to be Mg0.26Zn0.74O, regardless of deposition temperature while 90% of oxygen atoms are located in crystalline MgZnO matrixes. MgZnO deposited at 400C exhibits the lowest defect related emission that the ratio of defect related integrated PL intensity to that of integrated UV emission is 0.2 and the UV peak emission position is centered at 340 nm. The surface root-mean-square roughness of MgZnO films deposited at 400C and lower is less than 1 nm, while increases to 4 nm as deposition temperature increases to 500C, which is due to produce ZnO structure in films.

中文摘要 i 英文摘要 iii 目錄 iv 圖目錄 v 第一章 緒論 1 第二章 文獻回顧 4 2.1 氧化鋅特性簡介 4 2.2 氧化鋅鎂特性簡介 6 第三章 實驗方法與分析儀器 8 3.1 實驗步驟與樣品分析流程 8 3.2 實驗材料、設備與參數 9 3.3 分析儀器 12 3.3.1 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, FESEM) 12 3.3.2 X-ray繞射(X-ray Diffraction, XRD) 12 3.3.3 X光光電子能譜(X-ray photoelectron spectroscopy, XPS) 13 3.3.4 光致螢光光譜(Photoluminescence, PL) 14 3.3.5 原子力顯微鏡(Atomic Force Microscopy, AFM) 15 第四章 實驗結果與討論 17 4.1 場發射掃描式電子顯微鏡分析薄膜表面與側面結構 17 4.2 X-ray 繞射儀特性分析 24 4.3 X-ray 光電子能譜特性分析 29 4.4 光致螢光光譜分析 34 4.5 原子力顯微鏡分析 43 第五章 結論 51

[1] S. J. Pearton, D. P. Norton and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater Sci., Vol. 50, pp. 293-340, 2005.
[2] B. J. Jin, S. Im and S.Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films, Vol. 366, pp. 107-110, 2000.
[3] P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances presented by zinc oxide thin films deposited by RF magnetron sputtering,” Vacuum, Vol. 64, pp. 293-297, 2002.
[4] Y. Igasaki and H. Saito, “Effects of zinc diffusion on the electrical and optical properties of ZnO:Al films prepared by RF reactive sputtering,” Thin Solid Films, Vol. 199, pp. 223-230, 1991.
[5] M. T. Young and S. D. Keun, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In Films,” Thin Solid Films, Vol. 410, pp. 8-13, 2002.
[6] M. Chen, Z. L. Pei, C. Sun, J. Gong, R. F. Huang and L. S. Wen, “ZAO:an attractive potential substitute for ITO in flat display panels,” Mater. Sci. Eng. B, Vol. 85, pp. 212-217, 2001.
[7] C. Messaoudi, D. Sayah and M. Abd-lefdil, “Transparent conducting undoped and indium-doped zinc oxide films prepared by spray pyrolysis,” Phys. Status Solidi A, Vol. 151, pp. 93-97, 1995.
[8] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, “MgxZn1-xO as a Ⅱ-Ⅵ widegap semiconductor alloy,” Appl. Phys. Lett., vol. 72, pp. 2466-2468, 1998.
[9] K. H. Yoon and J. Y. Cho, “Photoluminescence characteristics of zinc oxide thin films prepared by spary pyrolysis technique,” Mater. Res. Bull., Vol. 35, pp. 39-46, 2000.
[10] Z. Fu, B. Lin and J. Zu, “Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition,” Thin Solid Films, Vol. 402, pp. 302-306, 2002.
[11] J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi and Y. Zheng, “The growth and annealing of single crystalline ZnO films by low-pressure MOCVD,” J. Cryst. Growth, Vol. 243, pp. 151-156, 2002.
[12] J. Wang, G. Du, Y. Zhang, B. Zhao, X. Yang and D. Liu, “Luminescence properties of ZnO films annealed in growth ambient and oxygen,” J. Cryst. Growth, Vol. 263, pp. 269-272, 2004.
[13] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and G. Shimaoka, “Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation,” Appl. Surf. Sci., Vol. 142, pp. 233-236, 1999.
[14] X. H. Li, A. P. Huang, M. K. Zhu, Sh. L. Xu, J. Chen, H. Wang, B. Wang, B. Wang and H. Yan, “Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films,” Mater. Lett., Vol. 57, pp. 4655-4659, 2003.
[15] W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films,” Mater. Lett., Vol. 55, pp. 67-72, 2002.
[16] C. Shi, Z. Fu, C. Guo, X. Ye, Y. Wei, J. Deng, J. Deng, J. Shi and G. Zhang, “UV luminescence and spectral properties of ZnO films deposited on Si substrates,” J. Electron. Spectrosc. Relat. Phenom., Vol. 101, pp. 629-632, 1999.
[17] S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, “Effects of post-annealing treatment on the light emission properties of ZnO thin films on Si,” Opt. Mater., Vol. 17, pp. 327-330, 2001.
[18] H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim and S. Y. Lee, “Variation of light emitting properties of ZnO thin films depending on post-annealing temperature,” Mater. Sci. Eng. B, Vol. 102, pp. 313-316, 2003.
[19] A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda and Y. Segawa, “Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices,” Appl. Phys. Lett., Vol. 75, pp. 980-982, 1999.
[20] D. T. Wei and A. Louderback, “Ion-assisted deposition of optical thin films:low energy vs high energy bombardment,” Appl. Opt., Vol. 23, pp. 552-559,1984.
[21] M. Salvato, A. Aurigemma, A. Teasuro and C. Attanasio, “Surface and structural disorder in MBE and sputtering deposited Cu thin films revealed by X-ray measurements,” Vacuum, Vol. 82, pp. 556-560, 2008.
[22] 鄧吉雄,“電子束蒸鍍機”,國科會南區微系統研究中心,2003。
[23] P. Sigmund, “In proceedings of Fundamental Processes in Sputtering of Atoms and Molecules,” The Royal Danish Academy of Science and Letters, Vol. 43, pp. 7, 1993.
[24] J. C. Hsu and C. C. Lee, “Single- and dual-ion-beam sputter deposition of titanium oxide films,” Appl. Opt., Vol. 37, pp. 1171-1176, 1998.
[25] G. Carter, “Steady state growth conditions in ion assisted or induced planar thin film deposition,” Thin Solid Films, Vol. 289, pp. 121-128, 1996.
[26] G. Carter, “Peening in ion-assisted thin-film deposition: a generalized model,” J. Phys. D, Vol. 27, pp. 1046-1055, 1994.
[27] S. Berg and T. Nyberg, “Fundamental understanding and modeling of reactive sputtering processes,” Thin Solid Films, Vol. 476, pp. 215-230, 2005.
[28] K. H. Yoon and J. Y. Cho, “Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique,” Mater. Res. Bull., Vol. 35, pp. 39-46, 2000.
[29] S. J. Pearton, D. P. Norton and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater Sci., Vol. 50, pp. 293-340, 2005.
[30] D. C. Look, J. W. Hemsky and J. R. Sizelove, “Residual Native Shallow Donor in ZnO,” Phys. Rev. Lett., Vol. 82, pp. 2552-2555, 1999.
[31] A. R. Hutson, “Hall Effect Studies of Doped Zinc Oxide Single Crystals,” Phys. Rev. Lett., Vol. 108, pp. 222-230, 1957.
[32] B. J. Jin, S. Im and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films, Vol. 366, pp. 107-110, 2000.
[33] Y. H. Leung, K.H. Tam, L. Ding, W. K. Ge, H. Y. Chen and S. Gwo, “Green, yellow, and orange defect emission from ZnO nanostructure:influence of excitation wavelength,” Appl. Phys. Lett., Vol. 88, pp. 103107-1-103107-3, 2006.
[34] Y. H. Leung, K. H. Tam, L. Ding, H. L. Tam and K.W. Cheah, “Defect emission in ZnO nanostructure,” Nanotechnology, Vol. 18, pp. 095702-1-095702-8, 2007.
[35] M. Gomi, N. Oohira, K. Ozaki and M. Koyano, “Photoluminescence and structure properties of precipitated ZnO fine particles,” Jpn. J. Appl. Phys., Vol. 42, pp. 481-485, 2003.
[36] G. Roussos, H.-J. Schulz and M. Thiede, “Luminescence and related optical properties of iron ion in Ⅱ-Ⅵ compounds,” J. Lumin., Vol. 31-32, pp. 409-411, 1984.
[37] B. Lin, Z. Fu, Y. Jia and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing condition,” J. Electrochem. Soc., Vol. 148, pp. 9110-9113, 2001.
[38] J. Chen, W. Z. Shen, N. B. Chen, D. J. Qiu and H. Z. Wu, “The study of composition non-uniformity in ternary MgxZn1-xO thin films,” J. Phys.:Condens. Matter, Vol. 15, pp. L475-L482, 2003.
[39] I. Takeuchi, W. Yang, K.-S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute and L. A. Bendersky, “Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads,” J. Appl. Phys., Vol. 94, pp. 7336-7340, 2003.
[40] W. E. Bowen, W. Wang, E. Cagin and J. D. Phillips, “Quantum confinement and carrier localization effects in ZnO/MgxZn1-xO wells synthesized by pulsed laser deposition,” J. Electron. Mater., Vol. 37, pp. 749-754, 2007.
[41] X. Dong, B. L. Zhang, X. P. Li, W. Zhao, X. C. Xia, H. C. Zhu and G. T. Du, “Study on the properties of MgxZn1−xO-based homojunction light-emitting diodes fabricated by MOCVD,” J. Phys. D: Appl. Phys., Vol. 40, pp. 7298-7301, 2007.
[42] C. C. Lee, D. T. Wei, J. C. Hsu and C. H. Shen, “Influence of oxygen on some oxide films prepared by ion beam sputter deposition,” Thin Solid Films, Vol. 290, pp. 83-93, 1996.
[43] I. J. Hsieh, K. T. Chu, C. F. Yu and M. S. Feng, “Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering,” J. Appl. Phys., Vol. 76, pp. 3735-3739, 1994.
[44] C. Messaoudi, D. Sayah and M. Abd-Lefdil, “Transparent conducting updoped and indium-doped zinc oxide films prepared by spray pyrolysis,” Phys. Stat. Sol. A, Vol. 151, pp. 93-97, 1995.
[45] F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin and Y. S. Yu, “Blueshift of near band edge emission in Mg doped ZnO thin films and aging,” J. Appl. Phys., Vol. 95, pp. 4772-4776, 2004.
[46] E. De la Rosa, S. Sepúlveda-Guzman, B. Reeja-Jayan, A. Torres, P. Salas, N. Elizondo and M. Jose Yacaman, “Controlling the growth and luminescence properties of well-faceted ZnO nanorods,” J. Phys. Chem. C, Vol. 111, pp. 8489-8495, 2007.
[47] R. Inoue, M. Kitagawa, T. Nishigaki, D. Morita, K. Ichino, H. Kusano and H. Kobayashi, “XPS study of ZnxMg1-xS:Mn ternary compound thin films,” Appl. Surf. Sci., Vol. 142, pp. 341-345, 1999.
[48] N. S. Ramgir, D. J. Late, A. B. Bhise, M. A. More, I. S. Mulla, D. S. Joag, and K. Vijayamohanan, “ZnO multipods, submicron wires, and spherical structures and their unique field emission behavior,” J. Phys. Chem. B, Vol. 110, pp. 18236-18242, 2006.
[49] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci., Vol. 158, pp. 134-140, 2000.
[50] J. S. Corneille, J.-W. He and D. W. Goodman, “XPS characterization of ultra-thin MgO films on a Mo(100) surface,” Surf. Sci., Vol. 306, pp. 269-278, 1994.
[51] S. A. Studenikin, N. Golego and M. Cocivera, “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis,” J. Appl. Phys., Vol. 84, pp. 2287-2294, 1998.

QR CODE