簡易檢索 / 詳目顯示

研究生: 莊宗翰
TSUNG-HAN CHUANG
論文名稱: 以磁控濺鍍法製備鉬基與鋯基金屬玻璃薄膜於7075-T6鋁合金之機械性質與磨潤性質研究
Mechanical properties and tribological properties of Mo-based and Zr-based metallic glass thin films coating on 7075-T6 aluminum alloy by magnetron sputtering
指導教授: 周育任
Yu-Jen Chou
口試委員: 施劭儒
Shao-Ju Shih
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 98
中文關鍵詞: 鉬基金屬玻璃薄膜非晶結構磁控濺鍍法奈米壓痕磨潤性質
外文關鍵詞: Mo-based metallic glass thin film, Amorphous structure, Magnetron sputtering, Nanoindentation, Abrasive properties
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

金屬玻璃(Metallic glass)作為一種興新材料,屬非晶態物質,由於其原子排列方式為短程有序(Short-Range Order)或是無序(Disorder),不會有晶界、差排、偏析等缺陷,因此能同時兼具高強度、高化學穩定性、耐腐蝕等性質。
目前鋯基金屬玻璃(Zirconium based metallic glasses)為熱門的研究對象,主要原因為鋯金屬具有較高強度、抗腐蝕能力。而鉬金屬相比於鋯、鈦、鎳與鐵等金屬,具有更高之熔點(2623˚C)、彈性模量、硬度、化學穩定性佳與低熱膨脹係數等優點,但就目前研究上數量較少,因此本研究選用鋯(Zirconium)與鉬(Molybdenum)作為金屬玻璃之主要合金元素成分,並透過磁控濺鍍法(Magnetron sputtering)以得到純度高且縝密之薄膜。透過奈米壓痕、奈米刮痕、接觸角、銷對盤磨耗等試驗,預期比較在相同元素配比下探討鉬基金屬玻璃薄膜(Mo50Ti30Ni20)與鋯基金屬玻璃薄膜(Zr50Ti30Ni20)披覆於 7075-T6 鋁基材(Substrate)之磨潤性質、機械性質。


Metallic glass as a new material, it is an amorphous substance. Because its atomic
arrangement is short-range order or disorder, there will be no defects such as grain
boundaries, dislocations, and segregation. Therefore, it can simultaneously have high
strength and high Chemical stability, corrosion resistance and other properties.
At present, Zr-based metallic glasses are a popular research object, mainly because
zirconium metal has high strength and corrosion resistance. Compared with metals such
as zirconium(Zr), titanium(Ti), nickel(Ni), and iron(Fe), molybdenum(Mo) has a higher
melting point (2623°C), elastic modulus, hardness, great chemical stability and low
thermal expansion coefficient. Therefore, in this study, zirconium(Zr) and
molybdenum(Mo) were selected as the main alloying elements of the metallic glass,
and use magnetron sputtering method to get a high-purity and dense thin film. Through
nano-indentation, nano-scratch, contact angle, pin-to-disk abrasion and other tests, it is expected to compare the Mo-based metallic glass thin film (Mo50Ti30Ni20) and the Zrbased metallic glass thin film (Zr50Ti30Ni20) with the same element ratio deposition on the 7075-T6 aluminum substrate with it grinding properties and mechanical properties.

摘要 .................................................................................................................................I Abstract.......................................................................................................................... II 致謝 ..............................................................................................................................III 目錄 ..............................................................................................................................IV 圖目錄 ..........................................................................................................................VI 表目錄 ........................................................................................................................... X 第 1 章 研究介紹 ........................................................................................................ 1 第 2 章 文獻回顧 ........................................................................................................ 2 2-1.金屬玻璃概述 (Metallic glasses overview) ...................................................2 2-2.金屬玻璃之發展歷史(The history development of metallic glasses) ............5 2-3.金屬玻璃之成形理論....................................................................................10 2-3-1.實驗歸納法則 ....................................................................................10 2-3-2.玻璃形成能力(GFA)..........................................................................12 2-3-2-1.臨界冷卻速率 .................................................................................14 2-3-2-2.過冷液相區 .....................................................................................15 2-3-2-3.簡化玻璃轉化溫度.........................................................................16 2-3-2-4.γ 值 ..................................................................................................18 2-3-2-5.γm 值 ...............................................................................................20 2-4.金屬玻璃之性質............................................................................................20 2-4-1.機械性質.............................................................................................20 2-4-2.軟磁性質.............................................................................................22 2-4-3.抗腐蝕、抗菌性質 ............................................................................22 2-4-4.其他性質.............................................................................................23 2-5.金屬玻璃之製程與應用................................................................................24 2-5-1.塊狀金屬玻璃 ....................................................................................24 2-5-2.金屬玻璃薄膜 ....................................................................................28 第 3 章 實驗方法 ...................................................................................................... 36 3-1.實驗方法........................................................................................................36 3-2.實驗材料介紹................................................................................................37 3-2-1.基板與銷桿件 ....................................................................................37 3-2-2.靶材.....................................................................................................38 3-3.實驗流程與參數............................................................................................40 V 3-4.製程與分析設備............................................................................................45 3-4-1.高功率磁控濺鍍機 ............................................................................46 3-4-2.迴轉式磨耗試驗機 ............................................................................46 3-4-3. X 光繞射分析儀................................................................................47 3-4-4.奈米壓痕試驗儀 ................................................................................48 3-4-5.雙束場發離子束聚焦顯微鏡 ............................................................52 3-4-6.雷射共軛焦顯微鏡 ............................................................................52 3-4-7.接觸角量測儀 ....................................................................................52 第 4 章 實驗結果 ...................................................................................................... 54 4-1.薄膜晶向分析(XDR analysis).......................................................................54 4-2.薄膜厚度與表面形貌....................................................................................55 4-2-1.膜厚量測.............................................................................................55 4-2-2.磨潤前鋁合金表面形貌 ....................................................................56 4-3.薄膜成分分析(EDS analysis)........................................................................57 4-4.表面粗糙度量測............................................................................................58 4-5.奈米壓痕分析................................................................................................61 4-5-1.壓痕測試.............................................................................................61 4-5-2.刮痕測試.............................................................................................61 4-6.接觸角分析....................................................................................................63 4-6-1.水接觸角.............................................................................................63 4-6-2.軌道油接觸角 ....................................................................................64 4-7.銷對盤磨耗測試分析....................................................................................65 4-7-1.磨潤後鋁合金表面形貌 ....................................................................65 4-7-2.磨潤摩擦係數與磨耗率 ....................................................................70 第 5 章 結果與討論 .................................................................................................. 72 5-1.直流濺鍍參數與膜厚探討............................................................................72 5-2.薄膜成分分析探討........................................................................................73 5-3.濺鍍時間與表面粗糙度探討........................................................................74 5-4.奈米刮痕探討................................................................................................75 5-5.磨潤性質探討................................................................................................75 第 6 章 結論 .............................................................................................................. 77 第 7 章 未來工作 ...................................................................................................... 78 第 8 章 參考文獻 ...................................................................................................... 79

[1] A.C. Lund, C.A.J.J.o.A.P. Schuh, Topological and chemical arrangement of
binary alloys during severe deformation.Journal of Applied Physics, 95 (2004)
4815-4822.
[2] B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing
(1956).
[3] G. Tiwari, R. Ramanujan, M. Gonal, R. Prasad, P. Raj, B. Badguzar, G.J.M.S.
Goswami, E. A, Structural relaxation in metallic glasses .Annals of the New York
Academy of Sciences, 304 (2001) 499-504.
[4] V.H. Hammond, M.D. Houtz, J.M.J.J.o.n.-c.s. O’Reilly, Structural relaxation
in a bulk metallic glass. Journal of non-crystalline solids, 325 (2003) 179-186.
[5] Y.-W. Kim, H.-M. Lin, T.F.J.A.M. Kelly, Amorphous solidification of pure
metals in submicron spheres .Acta Metallurgica, 37 (1989) 247-255.
[6] J.R. Scully, A. Gebert, J.H.J.J.o.M.r. Payer, Corrosion and related mechanical
properties of bulk metallic glasses .Journal of Materials research, 22 (2007) 302-
313.
[7] Q. Halim, N.A.N. Mohamed, M.R.M. Rejab, W.N.W.A. Naim,
Q.J.T.I.J.o.A.M.T. Ma, Metallic glass properties, processing method and
development perspective: a review .The International Journal of Advanced
Manufacturing Technology, 112 (2021) 1231-1258.
[8] W. Klement, R. Willens, P.J.N. Duwez, Non-crystalline structure in solidified
gold–silicon alloys .Nature, 187 (1960) 869-870.
[9] A. Brenner, D.E. Couch, E.K.J.J.R.N.B.S. Williams, Electrodeposition of
alloys of phosphorus with nickel or cobalt .J. Res. Nat. Bur. Stand, 44 (1950) 109.
80
[10] H. Chen, C.J.R.o.S.I. Miller, A rapid quenching technique for the preparation
of thin uniform films of amorphous solids .Review of Scientific Instruments, 41
(1970) 1237-1238.
[11] H.J.R.o.P.i.P. Chen, Glassy metals .Reports on Progress in Physics, 43 (1980)
353.
[12] H. Liebermann, C.J.I.T.o.M. Graham, Production of amorphous alloy ribbons
and effects of apparatus parameters on ribbon dimensions .IEEE Transactions on
Magnetics, 12 (1976) 921-923.
[13] https://www.materialsnet.com.tw/DocView.aspx?id=1862 (新興材料-塊狀
非晶質金屬材料).
[14] C. Koch, O. Cavin, C. McKamey, J.J.A.P.L. Scarbrough, Preparation of
‘‘amorphous’’Ni60Nb40 by mechanical alloying .Applied Physics Letters, 43
(1983) 1017-1019.
[15] A. Inoue, K. Hashimoto, Amorphous and nanocrystalline materials:
Preparation, properties, and applications, Springer Science & Business Media2001.
[16] A.J.M.S. Inoue, E. A, Bulk amorphous alloys with soft and hard magnetic
properties .Materials Science and Engineering: A, 226 (1997) 357-363.
[17] A.J.M.T. Inoue, JIM, High strength bulk amorphous alloys with low critical
cooling rates (overview) .Materials Transactions, JIM, 36 (1995) 866-875.
[18] A. Inoue, A. Kato, T. Zhang, T.J.M.t. Masumoto, JIM, Mg–Cu–Y amorphous
alloys with high mechanical strengths produced by a metallic mold casting
method .Materials transactions, JIM, 32 (1991) 609-616.
[19] A. Inoue, T. Nakamura, N. Nishiyama, T.J.M.T. Masumoto, JIM, Mg–Cu–Y
bulk amorphous alloys with high tensile strength produced by a high-pressure die
81
casting method .Materials Transactions, JIM, 33 (1992) 937-945.
[20] A. Peker, W.L.J.A.P.L. Johnson, A highly processable metallic glass: Zr41.
2Ti13. 8Cu12. 5Ni10. 0Be22. 5 .Applied Physics Letters, 63 (1993) 2342-2344.
[21] N. Nishiyama, A.J.M.t. Inoue, JIM, Flux treated Pd–Cu–Ni–P amorphous
alloy having low critical cooling rate .Materials Transactions, JIM, 38 (1997) 464-
472.
[22] W.-H. Wang, C. Dong, C.J.M.S. Shek, E.R. Reports, Bulk metallic glasses, 44
(2004) 45-89.
[23] A. Inoue, A.J.A.M. Takeuchi, Recent development and application products
of bulk glassy alloys .Acta Materialia, 59 (2011) 2243-2267.
[24] L.M. Andersen, S. Faulhaber, T. Harrington, D.C. Hofmann, H. Cheng,
K.S.J.J.o.N.-C.S. Vecchio, An experimental investigation on the notch toughness
of Cu-Zr-based bulk metallic glasses with in-situ crystallization .Journal of NonCrystalline Solids, 469 (2017) 70-78.
[25] A.J.A.m. Inoue, Stabilization of metallic supercooled liquid and bulk
amorphous alloys .Acta materialia, 48 (2000) 279-306.
[26] R.E. Reed-Hill, R. Abbaschian, R. Abbaschian, Physical metallurgy principles,
Van Nostrand New York1973.
[27] W.L.J.M.b. Johnson, Bulk glass-forming metallic alloys: Science and
technology .MRS bulletin, 24 (1999) 42-56.
[28] J.S. Jang, Y. Chen, L. Chang, H. Cheng, C. Huang, C.J.M.c. Tsau, physics,
Crystallization and fracture behavior of the Zr65− xAl7. 5Cu17. 5Ni10Six bulk
amorphous alloys .Materials chemistry and physics, 89 (2005) 122-129.
82
[29] J.S. Jang, S. Jian, C. Chang, L. Chang, Y. Huang, T. Li, J. Huang, C.J.J.o.a.
Liu, compounds, Thermal and mechanical properties of the Zr53Cu30Ni9Al8
based bulk metallic glass microalloyed with silicon .Journal of alloys and
compounds, 478 (2009) 215-219.
[30] X. Du, J. Huang, C. Liu, Z. Lu, New criterion of glass forming ability for bulk
metallic glasses, American Institute of Physics .Journal of applied physics, 2007.
[31] Z. Lu, C.J.I. Liu, A new approach to understanding and measuring glass
formation in bulk amorphous materials .Intermetallics, 12 (2004) 1035-1043.
[32] M.H. Cohen, D.J.T.J.o.C.P. Turnbull, Molecular transport in liquids and
glasses .The Journal of Chemical Physics, 31 (1959) 1164-1169.
[33] D. Turnbull, J.C.J.T.J.o.c.p. Fisher, Rate of nucleation in condensed
systems .The Journal of chemical physics, 17 (1949) 71-73.
[34] Z. Lu, Y. Li, S.J.J.o.N.-C.S. Ng, Reduced glass transition temperature and
glass forming ability of bulk glass forming alloys .Journal of Non-Crystalline
Solids, 270 (2000) 103-114.
[35] A. Inoue, W. Zhang, T. Zhang, K.J.A.m. Kurosaka, High-strength Cu-based
bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems .Acta materialia,
49 (2001) 2645-2652.
[36] D.J.C.p. Turnbull, Under what conditions can a glass be
formed? .Contemporary physics, 10 (1969) 473-488.
[37] Turnbull, D., & Cohen, M. H. (1961). Free‐volume model of the amorphous
phase: glass transition.The Journal of chemical physics, 34(1), 120-125.
[38] T.A. Waniuk, J. Schroers, W.L.J.A.P.L. Johnson, Critical cooling rate and
thermal stability of Zr–Ti–Cu–Ni–Be alloys .Applied Physics Letters, 78 (2001)
1213-1215.
83
[39] Z. Lu, C.J.A.m. Liu, A new glass-forming ability criterion for bulk metallic
glasses .Acta materialia, 50 (2002) 3501-3512.
[40] M. Ashby, A.L.J.S.M. Greer, Metallic glasses as structural materials .Scripta
Materialia, 54 (2006) 321-326.
[41] H. Choi-Yim, R. Conner, F. Szuecs, W.J.A.M. Johnson, Processing,
microstructure and properties of ductile metal particulate reinforced
Zr57Nb5Al10Cu15. 4Ni12. 6 bulk metallic glass composites .Acta Materialia, 50
(2002) 2737-2745.
[42] A. Inoue, T. Zhang, H. Koshiba, A.J.J.o.a.p. Makino, New bulk amorphous
Fe–(Co, Ni)–M–B (M= Zr, Hf, Nb, Ta, Mo, W) alloys with good soft magnetic
properties .Journal of applied physics, 83 (1998) 6326-6328.
[43] 鄭振東,非晶質金屬漫談,建宏出版社,台北,台灣, (1998).
[44] B. Zberg, P.J. Uggowitzer, J.F.J.N.m. Löffler, MgZnCa glasses without
clinically observable hydrogen evolution for biodegradable implants .Nature
materials, 8 (2009) 887-891.
[45] R. Budhani, T. Goel, K.J.B.o.M.S. Chopra, Melt-spinning technique for
preparation of metallic glasses .Bulletin of Materials Science, 4 (1982) 549-561.
[46] S. Savage, F.J.J. Froes, Production of rapidly solidified metals and
alloys .JOM, 36 (1984) 20-33.
[47] A.J.M.S. Inoue, E. A, Bulk amorphous and nanocrystalline alloys with high
functional properties .Materials Science and Engineering: A, 304 (2001) 1-10.
84
[48] X. Li, C. Kang, H. Huang, T.J.M. Sercombe, Design, The role of a lowenergy–density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic
glass composites via selective laser melting .Materials & Design, 63 (2014) 407-
411.
[49] N.J.A.o. Kaiser, Review of the fundamentals of thin-film growth .Applied
optics, 41 (2002) 3053-3060.
[50] K. Oura, M. Katayama, A.V. Zotov, V.G. Lifshits, A.A. Saranin, Growth of
Thin Films, Surface Science: An Introduction, Springer Berlin Heidelberg,
Berlin, Heidelberg .Annual review of materials science, 2003, pp. 357-387.
[51] P.J.A.A.S.R. Savale, Physical vapor deposition (PVD) methods for synthesis
of thin films: A comparative study .Arch. Appl. Sci. Res, 8 (2016) 1-8.
[52] J. Koskinen, 4.02 - Cathodic-Arc and Thermal-Evaporation Deposition, in: S.
Hashmi, G.F. Batalha, C.J. Van Tyne, B. Yilbas (Eds.) Comprehensive Materials
Processing, Elsevier, Oxford, 2014, pp. 3-55.
[53] O.O. Abegunde, E.T. Akinlabi, O.P. Oladijo, S. Akinlabi, A.U.J.A.M.S. Ude,
Overview of thin film deposition techniques .AIMS Materials Science, 6 (2019)
174-199.
[54] https://www.semicore.com/what-is-sputtering-Written, (By Matt Hughes –
President – Semicore Equipment, Inc.Published: 24 November 2014).
[55] R.J. Goldston, Introduction to plasma physics .Thin solid films, CRC
Press2020.
[56] W.D. Sproul, D.J. Christie, D.C.J.T.s.f. Carter, Control of reactive sputtering
processes, 491 (2005) 1-17.
85
[57] A. Belkind, A. Freilich, J. Lopez, Z. Zhao, W. Zhu, K.J.N.J.o.P. Becker,
Characterization of pulsed dc magnetron sputtering plasmas .New Journal of
Physics, 7 (2005) 90.
[58] K. Sarakinos, J. Alami, S.J.S. Konstantinidis, c. technology, High power
pulsed magnetron sputtering: A review on scientific and engineering state of the
art .Surface and coatings technology, 204 (2010) 1661-1684.
[59] P.-T. Chiang, G.-J. Chen, S.-R. Jian, Y.-H. Shih, J.S.-C. Jang, C.-H.J.F.J.o.H.S.
Lai, Surface antimicrobial effects of Zr61Al7. 5Ni10Cu17. 5Si4 thin film metallic
glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa,
Acinetobacter baumannii and Candida albicans .Fooyin Journal of Health Sciences,
2 (2010) 12-20.
[60] H. Michels, J. Noyce, C.W.J.L.i.a.m. Keevil, Effects of temperature and
humidity on the efficacy of methicillin‐resistant Staphylococcus aureus challenged
antimicrobial materials containing silver and copper .Letters in applied
microbiology, 49 (2009) 191-195.
[61] Gudmundsson, J. T., & Hecimovic, A. (2017). Foundations of DC plasma
sources.Plasma Sources Science and Technology,26(12), 123001.
[62] Liang, H., Xu, J., Zhou, D., Sun, X., Chu, S., & Bai, Y. (2016). Thickness
dependent microstructural and electrical properties of TiN thin films prepared by
DC reactive magnetron sputtering.Ceramics International,42(2), 2642-2647

無法下載圖示 全文公開日期 2033/08/03 (校內網路)
全文公開日期 2033/08/03 (校外網路)
全文公開日期 2033/08/03 (國家圖書館:臺灣博碩士論文系統)
QR CODE