簡易檢索 / 詳目顯示

研究生: 何碩文
Shuo-wen Ho
論文名稱: 基因演算法於直流馬達模型識別與伺服控制上之應用研究
DC Motor Identification and Servo Control via Genetic Algorithm
指導教授: 唐永新
Yeong-Shin Tarng  
口試委員: 鍾國亮
Kuo-Liang Chung
洪西進
Shi-Jinn Horng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 68
中文關鍵詞: 基因演算法
外文關鍵詞: Genetic Algorithm
相關次數: 點閱:368下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主在探討基因演算法於直流馬達之模型建立及伺服控制之實務應用研究。首先探討基因演算法應用於建立受控體之模型,並且配合物理之原則量測馬達內部之參數,將量測設備之成本降到最低並且提高模型之可靠度。
    工業上於控制器之選用多採比例積分微分控制器(PID Controller)為主,但是其參數決定方法仍多採人為的嘗試錯誤法,不但耗時且效率差。論文中將基因演算法運用於PID控制器之參數搜尋上,主以PID-GA、MRPID-GA及嵌入式基因演算法三種進行參數之搜尋。由實驗結果顯示應用基因演算法於PID控制器之參數搜尋上不但可協助控制器參數設計人員完成設計,更將複雜的參數決定過程簡化至只需決定所想要的輸出響應。另外嵌入式基因演算法乃是實現於單晶片之硬體中,於實務上不但大幅度降低設備成本且不必事前得知受控體之數學模型,更提升控制程式與控制參數之保密性。


    The main purpose of the thesis is practically applying genetic algorithm (GA) to establish D.C. motor model and servo position control. First, GA is aimed at modeling. We propose several Physics principle to measure the parameter inside the motor in order to save the cost of measuring equipment and promote the reliability of the model.
    The majority of the regulators used in industry are of the PID type. However, the most popular tuning way is manual trial-and-error method and it is laborious and time consuming. By means of GA, three methods, PID-GA、MRPID-GA, and Embedded GA, are used in the thesis for searching the parameter of PID controller. The experiment of the result shows that GA is not only helping engineers design the controller but also simplifying the complex designing process to only determine the desired response. Furthermore, being realized in single-chip hardware, Embedded GA method saves the cost of equipment, does not need well-known mathematic model in advance, and promotes the security of control program and parameter.

    摘要I AbstractII 誌謝III 目錄IV 圖索引VII 表索引X 第一章緒論1 1.1簡介1 1.2研究動機與目的3 1.3文獻回顧4 1.4論文大綱7 第二章驅動器設計8 2.1 PWM驅動原理8 2.2直流馬達H電橋驅動電路結構10 2.3 控制電路之製作12 2.3.1驅動電路12 2.3.2雙向PWM信號輸入與反相PWM信號輸入14 2.3.3編碼器解碼電路15 2.4緩衝電路與控制器之保護17 2.4.1緩衝電路17 2.4.2光耦合電路19 2.5電路圖與PCB板圖20 2.5.1電路圖20 2.5.2 PCB板圖21 第三章 基因演算法簡介22 3.1遺傳基因演算法22 3.2遺傳基因演算法的基本概念23 第四章 直流馬達參數模型建立30 4.1參數量測法30 4.1.1電樞繞組的總電阻值Ra之量測30 4.1.2電樞繞組的電感La之量測31 4.1.3馬達的扭力常數Kt及反電動勢常數Kb之量測32 4.1.4黏滯係數 之量測33 4.2運用基因演算法尋找未知之參數34 第五章 PID控制器之設計39 5.1系統規格訂定與PID控制器結構設計39 5.1.1系統規格訂定39 5.1.2 PID控制器結構設計41 5.2以基因演算法進行PID參數值之設計43 5.3嵌入式基因演算法45 第六章 實驗結果與討論47 6.1實驗設備47 6.2古典設計法之參數之實測結果48 6.3基因演算法設計PID參數之實測結果55 6.3.1 PID-GA參數設計法之實驗結果56 6.3.2 MRPID-GA參數設計法之實驗結果58 6.4嵌入式基因演算法之實測結果60 第七章 結論與未來展望63 參考文獻65

    [1]S.B. Fuller, E.J. Wilhelm, and J.M. Jacobson, ”Ink-Jet Printed Nanoparticle Microelectromechanical Systems,” Journal of Microelectromechanical Systems, Vol. 11, No.1, (2002).
    [2]T.S. Low, M.A. Jabbar, and T.S. Tan, “Slotless PM Motor Design for Hard Disk Drives,” IEEE Industry Applications Magazine, November/December (1997).
    [3]V. G Moudgal, K. M. Passino, and S. Yurkovich. “Rule-Based Control for a Flexible-Link Robot,” IEEE Trans. on Fuzzy Systems, 3(2): 199-210, May (1995).
    [4]P.J. Gawthrop, “Self-Tuning PID Control Structures,” The Institution of Electrical Engineers, London (1996).
    [5]P. Guillemin, ”Fuzzy Logic Applied to Mmotor Control,” Industry Applications, IEEE Transactions on Vol. 32, Issue 1, Jan.-Feb. pp. 51 – 56(1996).
    [6]A. Rubaai, R. Kotaru, “Adaptation Learning Control Scheme for a High Performance Permanent Magnet Stepper Motor Using online Random Training of Neural Networks,” IEEE Transactions on Vol. 37, Issue 2, March-April, pp. 495 – 502(2001).
    [7]H. Butler, G. Honderd, and J. V. Amerongen,” Model Reference Adaptive Control of a Direct-Drive DC Motor,” IEEE Control Systems Magazine Vol. 9, Issue 1, Jan. pp.80 – 84(1989).
    [8]J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers,” Trans. ASME, Vol.65, pp. 433-444 (1942).
    [9]DC Motors Speed Controls Servo Systems, Electro-Craft Corporation, 2-16~2-28,3-20~3-24
    [10]杜光宗,小型馬達控制IC,第 66~67頁,台北, 建宏出版社,民國八十年
    [11]STMicroelectronics, “DMOS Full Bridge Driver,” (2003)
    [12]Hewlett Packard, “Quadrature Decoder/Counter Interface ICs,” (2002)
    [13]Texas Instruments, “6N137 Optocoupler/Optoisolator,” (1998)
    [14]V. Telefunken, “Optocoupler with phototransistor Output,” (1999)
    [15]L. E. Davis, “Microprocessor Control of DC Motor Drives,” IEEE Industry Appl. Conference Record, Vol. 2, pp.1782-1786 (1992)
    [16]J. Holland, "Outline for Logical Theory of Adaptive System," Journal of the Association for Computing Machinery, 3, pp. 297-314(1962.)
    [17]G. F. Franklin, J. D. Powell, and M. Workman, “Digital Control of Dynamic Systems”, Addison-Wesley, California, pp. 213, 66(1998)
    [18]S. Bennett, ”Real-Time Computer Control,” Prentice Hall, New Jersey, pp.115-119 (1988)
    [19]G. P. Liu, and S. Daley,“Optimal-Tuning Nonlinear PID Control of Hydraulic Systems,”Control Engineering Practice, pp. 1045-1053 February (2000)
    [20]Q. W. Yang, J. P. Jiang, and G. Chen,“How to Select Optimal Control Parameters for Genetic Algorithms,”Industrial Electronics, Vol.1, pp.37-41, (2000)
    [21]D. P. Kwok, F. Sheng, “Genetic Algorithm and Simulated Annealing for Optimal Robot Arm PID Control,” Evolutionary Computation, Vol.2, pp. 707-713, (1994)
    [22]W. R. Hwang and W. E. Thompson, “Design of Intelligent Fuzzy Logic Controllers Using Genetic Algorithms,” Proc IEEE Conf., Fuzzy Systems, IEEE World Congress on Computational Intelligence, pp.1383 –1388, (1994)
    [23]I. J. Nagrath and M. Gopal, “Control Systems Engineering,” Wiley Eastern Limited, pp.159-164 (1985)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE