簡易檢索 / 詳目顯示

研究生: 陳濡言
Ju-Yen Chen
論文名稱: 以低溫常壓電漿表面改質軟性基板及接枝聚合溫度敏感型高分子
Surface Modification of Flexible Substrates using Low-Temperature Atmospheric Pressure Jet for Grafting Thermosensitive Polymer
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 朱瑾
Jinn Chu
黃駿
Chun Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 140
中文關鍵詞: 常壓電漿表面改質智慧型高分子接枝聚合技術
外文關鍵詞: Atmospheric-pressure plasma, surface modification, smart polymer, grafting polymerization
相關次數: 點閱:444下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用低溫電漿於高分子基材進行表面改質及活化,會改變其表面物性與化性,例如親疏水性、表面活性以及表面形貌,但又能夠保有塊材之整體性質,而此項技術已被廣泛應用。然而,常壓電漿技術比傳統的低溫電漿技術無需高昂貴之真空設備、製程快速與連續式、大面積處理及成本更為低廉等優點,已廣泛應用於軟性基材之表面改質製程。此外目前使用接枝聚合技術於軟性基材之方式,可先行利用電漿進行表面改質後產生適合後續進行接枝聚合之高分子鍵結於其表面,此種整合技術將應用於本研究製備溫度感測器元件之開發。
    本研究提出第一部分為常壓電漿噴射系統之製程參數對軟性基材表面改質之影響,以探討其表面性質之改變(如表面能、表面鍵結等),接著以水接觸角量測其親疏水性及其表面能變化、場發式電子顯微鏡觀察其表面形貌 、原子力顯微鏡測量其粗糙度、X光電子能譜儀分析經電漿處理後之表面官能基組成變化,以提升後續高分子材料與基材間兩相介面之接枝聚合結合能力,已證實含氧基團如羰基(C = O鍵)和羧基(OC = O)等親水性官能基經過電漿處理後於基材表面上產生,而於更高的射頻功率由於嚴重的離子轟擊會獲得較低的接觸角數值與較高表面粗糙度,為了證明激發態粒子物種,利用光發射光譜儀(OES)得知主氣體氬氣物種濃度較高且有親水性物種於電漿束中生成,進一步推導高分子表面的親水性官能基經電漿處理後生成之反應機制。
    第二部分則藉由最佳電漿製程參數改質之軟性基材利用紫外光固化技術,複合功能轉印機台在進行紫外光固化轉印,以紫外光作為照射進而達到聚合固化之功能接枝聚合智慧型高分子,以製備成溫度感測器元件。製備後之試片表面形態則以場發射掃描式電子顯微鏡進行觀察,並以傅立葉紅外線光譜分析儀與X光光電子能譜分析儀鑑定表面官能基與化學鍵結之組成。最後,第二部分所製備之溫度感測器元件,將在不同溫度環境下評估其溫度應答之範圍及利用微差熱分析儀準確判讀其相變化臨界溫度,再以循環溫感測試與長效期測試以確定元件之穩定性,經分析後證實於APPJ處理的高分子基板上的光致熱敏聚合物接枝聚合有效地接枝上去,在PET基材的智慧型高分子於室溫下是無色的,而超過LCST時表面顏色轉變成乳白色。


    Surface modification of polymer substrates by low-temperature plasma is a well-developed technology for the alteration of surface chemical and physical properties, such as hydrophilicity, reactivity, and morphology. Meanwhile, much attention has been paid to utilize the plasma at atmospheric pressure due to possible advantages of eliminating an expensive vacuum system, on-line processing capabilities, high efficiency, and the scalability to a larger area. So far, the bonding of smart polymer materials onto flexible substrates possess two processes, i.e. surface modification of substrates by atmospheric pressure plasma Jet(APPJ) and subsequent grafting-polymerization technology. In this study, we propose the methodology of fabricating a temperature sensing device by these two technologies.
    At the first Step, we will investigate the process parameters of APPJ system affecting the surface properties, which could offer the information of surface energy and surface bonding of substrates favoring the subsequent grafting polymerization technology. The feasibility of grafting polymerization of smart polymer materials on APPJ-treated substrates as temperature sensing devices will be performed at the second step, APPJ-treated flexible substrates were carried out by contact angle measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectrometry (XPS). According to those results, the surface hydrophilicity and chemical compositions correlate closely with the RF power. it is confirmed the oxygen-containing groups like carbonyl (C=O) and carboxyl (O-C=O) groups were generated on the hydrophilic surface. The rough surface with a lower contact angle was obtained at higher RF power due to severe ion bombardment, evidently proven the higher electron density based on the collisional–radiative model of excited particles and Ar metastable species concentration by optical emission spectroscopy (OES). The reaction mechanism of surface modification which controls the hydrophilicity of flexible substrates surface is presented here as well.
    At the second step , we applied the optimal parameters of APPJ system using hot embossing processes for micro and nano structure fabrication. Graft polymerization intelligent polymer, the performance of temperature response of devices will be examined under different temperatures environments, as well as the evaluation of the reproducibility of temperature sensing devices under aging test and thermal cycling test to determine the stability of the components, The photo-induced grafting polymerization of thermosensitive polymer on APPJ-treated flexible substrates were effectively achieved, the smart polymer on PET and PMMA substrates were colorless at room temperature, while the color of the surface over LCST became milky white .

    目 錄 中文摘要 I 英文摘要 Ⅲ 目錄 Ⅴ 圖索引 Ⅷ 表索引 XIV 第一章 緒論 1   1.1 前言 1   1.2 大氣壓力電漿的優勢 2   1.3 高分子基材簡介 3   1.4 研究目的和方向 3 第二章 文獻回顧 5   2.1電漿簡介 5   2.1.1 電漿定義 5   2.1.2 電漿原理及七大反應 6   2.1.3 電漿分類 9   2.1.4 電漿分類(以系統來區分) 10   2.1.5 常壓電漿的優勢 13   2.1.6 工作氣體的選擇 18   2.2 接枝聚合方法 20   2.3 表面接枝法 21   2.4 智慧型高分子研究 23   2.4.1 羥丙基纖維素(Hydroxypropyl Cellulose) 25   2.4.2 聚氧化丙烯-PEO(PPO-PEO) F127 26   2.4.3 聚異丙基丙烯醯胺 PNIPAAM 28   2.5 複合功能轉印設備設計 29   2.6 表面自由能 31   2.6.1 Owens-Wendt-Rabel-Kaelble method (OWRK method) 31   2.6.2 Wu’s harmonic method (Wu’s method) 32   2.7 RF電漿 33   2.8 氮氣(N2)與乾燥空氣(CDA)混合電漿 34   2.9 高分子結構 37   2.9.1 環境敏感型聚合物 39   2.9.2 LCST形成原理 40   2.9.3 外加物質對LCST的影響 41 第三章 實驗方法與儀器原理 42   3.1 實驗目的 42   3.2 實驗藥品與耗材 42   3.3 實驗步驟 44   3.3.1 實驗系統 44   3.3.2 實驗方法 46   3.3.3 性質分析與測試 47 第四章 結果與討論 56   4.1大氣壓電漿處理高分子基材之表面分析 56   4.2功率效應 58   4.2.1輝光放電 58   4.2.2表面潤濕性量測 58   4.3表面型態分析 63 4.3.1 SEM表面形貌觀察 63   4.3.2 表面粗糙度分析 64   4.4 電漿內部物種分析 64 4.4.1 光放射光譜分析 64   4.4.2 光放射光譜分析於不同氣體流率 65   4.4.3 光放射光譜分析於電漿束口側端 66 4.5 表面元素分析 76 4.5.1 XPS光電子能譜儀於PET基材表面之元素分析 76 4.5.2 XPS光電子能譜儀於PMMA基材表面之元素分析 78 4.6 時效測試 85   4.7接枝聚合溫度敏感應型高分子 86   4.7.1 接枝重量變化 86   4.7.2 智慧型高分子之SEM表面形貌觀察 89   4.7.3 溫度敏感型高分子固定於高分子軟性基材上之化學結 構變化(FTIR) 94   4.7.4 化學成分變化 98   4.7.5 溫度感應性量測 106   4.8電漿表面處理技術在各種生醫材料領域的應用 108 第五章 結論與未來展望 113 參考文獻 116

    [1] 劉志宏,“能源科技之電漿應用”中原大學化學工程學系 (2009)
    [2] 洪昭南、郭有斌,“電漿反應器與原理”, 化工技術,第9卷,第10期, pp. 156-176 (2001)
    [3] Schmid, H.B.Kegel, W. Petasch, and G. Liebel, “ Low Pressure Plasma processing in Microelectronics”, in Proc. Joint.
    [4] Claire Tendero, Christelle Tixier, Pascal Tristant , Jean Desmaison, Philippe Leprince, “Atmospheric pressure plasmas” Spectrochimica Acta , Vol.68, pp.5-30(2009)
    [5] I.H.Hutchinson, “Principles of Plasma Diagnostics” 2nd, Cambridge University Press, (2002)
    [6] 洪昭南, “Development of Large-Area Atmospheric”, 國立成功大學化學工程學系
    [7] 劉志宏, “應用實驗技術法與電漿診斷技術探討電漿沉積氟碳膜製程之研究”中原大學化學工程學系博士論文(2005)
    [8] 劉志宏、黃駿、許文通、蔡禎輝,張所鋐,“以大氣電漿進行材料表面微米級圖案化之加工技術”,機械工業雜誌,306,66(2008)
    [9] 楊士賢,“以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究”,中原大學化學工程學系碩士論文 (2005)
    [10] Tendero. C, Tixier. C, Tristant P, Desmaison J. and Leprince, P. “Atmospheric pressure A review”. Spectrochimica Acta-part B Atomic Spectroscopy 61, pp.2-30 (2006)
    [11] Boulos, M. I. “Thermal plasma processing, IEEE Trans”. Plasma Sci, Vol.20, pp.1127-1149 (1998)
    [12] H. V. Boening, “Plasma Science and Technology”, Cornell University Press, (1982)
    [13] 翁志強,“順流式遠端電漿對單層有基金屬表面應機制之研究”,私立中原大學醫學工程系碩士論文 (2001)
    [14] K. Pochner, W.Neff, R. Lebert, “Atmospheric pressure gas for surface”.
    [15] Yu Ren, Chunxia Wang, Yiping Qiu “Aging of surface properties of ultra high modulus polyethylene fibers treated”, Surface & Coatings Technology Vol.202, pp.2670–2676(2008)
    [16] K. Niemi, St. Reuter, L. Schaper, N. Knake, V. Schulz-von der Gathen,T. Gans, “Diagnostics on an atmospheric pressure plasma jet”, IOPSCience, Vol 71, pp. (2007)
    [17] S. Kumar, Hyuntaek Na, V. Selvarajan, Changhee Lee, “Influence of metal powder shape on drag coefficient in a spray jet”, Current Applied Physics Vol.9, pp.678–682(2009)
    [18] J.Y. Jeong,S.E. Babayan, V.J.Tu, J.Park, R.F.Hicks,and G.S.Selwyn, “Plasma Source Sci.Technol”.7,282(1998)
    [19] So-Jin Park, Eun-Jung Lee, Byung-Joo Kim, “A study of atmospheric-pressure CHF3/Ar plasma treatment on dielectric characteristics of polyimide films”, Journal of Colloid and Interface Science, Vol.319 pp.365–369 (2008)
    [20] Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B.F. Sørensen, H. Bindslev, “Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement”, International Journal of Adhesion & Adhesives , Vol.27, pp.402–408 (2007)
    [21] M. Goldman and . Goldman, “Corona discharges in Gaseous Electronics”, , M.N. Hirsh and H.J.Oskam,Eds.New orkAcademic, vol.1, pp.219-290 (1978)
    [22] S. Kment, P. Kluson, H. Zabova, A.Churpita, M. Chichina, M. Cada, I. Gregora, J. Krysa, Z. Hubick, “Atmospheric pressure barrier torch discharge and its optimization for flexible deposition of TiO2 thin coatings on various surfaces”. Surface & Coatings Technology, Vol.204 pp. 667–675 (2009)
    [23] 工業技術研究院
    [24] H. Conrads, M. Schmidt, “Plasma generation and plasma sources”
    [25] 工業材料研究所尖端材料實驗室“淺談電漿表面處理技術”, 工業材料, Vol.123 , pp.82 (1997)
    [26] 高正雄,“高分子材料的電漿表面處理”, 電漿化學
    [27] 王宗新,“金字塔抗反射結構之製作及其單晶矽太陽能電池之應用”, 國立中山大學光電工程研究所碩士論文 (2007)
    [28] R Mohan Sankaran and K P Giapis, “High-pressure micro-discharges in etching and deposition applications”, Journal of Physics D: Applied Physics, Vol.36, pp.2914-2921 (2003)
    [29] J.K. Evju, P.B. Howell, L.E. Locascio, M.J. Tarlov, J.J. Hickman, “ Atmospheric pressure microplasmas for modifying sealed microfluid devices”, Appl. Phys. Lett, 1668 (2004)
    [30] Yu-Lin Kuo, Kuang-Hui Chang, Tusi-Shan Hung, Ko-Shao Chen, Norihiro Inagaki, “Atmospheric-pressure plasma treatment on polystyrene for the photo-induced grafting polymerization of N-isopropylacrylamide”, Thin Solid Films, Vol.518, pp.7568–7573 (2010)
    [31] Yi-Hao Pai, Jyh-Harng Ke, Hsin-Fu Huang, Chih-Ming Lee, Jyh-Myng Zen, Fuh-Sheng Shieu, “CF4 plasma treatment for preparing gas diffusion layers in membrane electrode assemblies”, Journal of Power Sources, Vol.161, pp. 275–281 (2006)
    [32] Inagaki, N. “Plasma surface modification and plasma polymerization”, Technomic Publishing (1996)
    [33] Belford, R. E. and sood,S , “Surface activation using remote plasma for hydrophilic bonding at elevated temperature”. Electrochemical and solid-State Letters, Vol.10, pp.145-148(2007)
    [34] Colman, R. W, “Surface-mediated defense reactions of the plasma contact activation system”, Journal of Clinical Investigation, Vol.73, pp.1249-1253(1984)
    [35] Johnsen, K. Kirkhorn, S. Olafsen, K. Redford, K. Stori, A. “modification of polyolefin surfaces by plasma-induced grafting”. Journal of Applied Polymer Science, Vol.59, pp.1651-1657 (1996)
    [36] H. K. Yasuda, “Plasma polymerization”, Academic Press, (1985)
    [37] T. Yokoyama, M. Kogoma, T. Moriwaki, S. Okazaki, “The mechanism of the stabilisation of glow plasma at atmospheric pressure”, Journal of Physics D: Applied Physics, Vol.23, p331-336 (1990)
    [38] Crter, J.M., Flynn, H.E., Meenaghan, M.A., Natiella, J.R., Akers, C.K., and Baier, R.E, Biomed, Vol.15, pp.843-852 (1981)
    [39] R. Prat, Y.J. Koh, Y. Babukutty, M. Kogoma, S. Okazaki, M. Kodama, “Polymer deposition using atmospheric pressure plasma glow(APG) discharge”, Polymer, Vol. 41,pp. 7355–7360(2000)
    [40] S. Sinan Keskin, Necdet Aslan , Fuat Bayrak, “Optical properties and chemical behavior of Laser-dye Coumarin-500 and the influence of atmospheric corona discharges”, Spectrochimica Acta Part A, Vol.72, pp.254-259(2009)
    [41] S. Kanazawa , “Study of The Plasma Surface Modification and The Preparation for Electric Conductivity of Polyester Fabric”, J. Phys. D Appl. Phys.,vol.21, pp. 836 (1988)
    [42] Soon Hwa Jung, Sang Min Park, Soung Hee Park, and Sang Done Kim, “Surface Modification of Fine Powders by Atmospheric Pressure Plasma in a Circulating Fluidized Bed Reactor”, American Chemical Society, Vol. 43, pp. 5483-5488 (2004)
    [43] M. Konuma, “ Film Deposition by Plasma Techniques”, Journal of Solid State Chemistry, Vol. 133, pp.279-291(2002)
    [44] Y.C.Nho, J.Chen and J.H.Jin, “Grafting polymerization of styrene onto preirradiated polypropylene fabric”, Radiation Physics and Chemistry, Vol.54, P.317-322 (1999)
    [45] T.A. Sergeyeva, H .Matuschewsk, S.A. Piletsky, J. Bendig, U.Schedler and M. Ulbricht, “Molecularly imprinted polymer membrances for substance-selective solid-phase extraction from water by surface photo-grafting polyme”, Journal of Chromatography A, Vol.907, pp.89-99 (2001)
    [46] I. Gancarz, G. Po niak, M. Bryjak, A. Frankiewicz, Acta Polymeric, “The Surface Functional Modification of QCM Sensors for Concentration Determination of Nano Gold Solutions”, Journal of Clinical Investigation , Vol. 50, pp. 317-326 (1999)
    [47] O. Goossens, E. Dekempeneer, D. Vangeneugden, R. Van , “Chemical and physical properties of hydrophobic coatings obtained in a dielectric barrier discharge”, Surface and Coatings, Vol.100, pp. 964-970 (2009)
    [48] Yan-Peng Jiao, Fu-Zhai Cui, “Surface modification of polyester biomaterials for tissue engineering”, Biomedical Materials, Vol.2 , pp. 1001-1009 (2004)
    [49] Gregory T. Lewis, Gregory R. Nowling, Robert F. Hicks, and Yoram Cohen, Langmuir, “Inorganic surface nanostructuring by atmospheric pressure plasma-induced graft polymerization”, Vol.23, pp.10756-10764 (2007)
    [50] Masaaki Okubo , Mitsuru Tahara , Noboru Saeki , Toshiaki Yamamoto, “Surface modification of fluorocarbon polymer films for improved adhesion using atmospheric-pressure nonthermal plasma graft-polymerization”, Thin Solid Films, Vol.516, pp6592-6597 (2008)
    [51] P. Kou, J.H., Amidson, G. L. and Lee, P. I. pH-dependent swelling and solute diffusion characteristics of poly(hydroxyrthyl methacrylate-co-methacrylic acid) hydrogels. Pharm. Vol.59, pp.592-597 (1988)
    [52] Maria Bohorquez, Cody Koch, Troy Trygstad, and Nivedita Pandit, “A study of the temperature-dependent micellization of pluronic F127”, Journal of Colloid and Interface Science, Vol.216, pp.33-40(1999)
    [53] So Yeon Kim, Sung Min Cho,1 Young Moo Lee,1 Seon Jeong Kim, “Thermo- and pH-Responsive Behaviors of Graft Copolymer and Blend Based on Chitosan and N-Isopropylacrylamide”, Journal of Applied Polymer Science, Vol. 78, 1381–1391 (2000)
    [54] Jianjun Guan, Changyou Gao, Linxiang Feng, Jiacong Shen, “Functionalizing of Polyurethane Surfaces by Photografting with Hydrophilic Monomers”, Journal of Applied Polymer Science, Vol. 77, pp.2505-2512 (2000)
    [55] 宋鴻贊,張軍,燕化牛,王志剛, “相變與流變行為的濃縮纖維素離子液體解決方案”, 中國物理化學, 卷114, pp.6006-6013 (2010)
    [56] L. F. Wang, E. M. Pearce and T. K. Kwei, “Mesophase formation of hydroxypropyl cellulose as affected by miscibility with a flexible polymer”, Vol.32, pp.249-260 (1991)
    [57] 呂明和,“電漿改質應用於吸著分離纖維材料之開發”, 行政院國家科學委員會補助專題研究計畫(2005)
    [58] Maria Bohorquez, Cody Koch, Troy Trygstad, and Nivedita Pandit, “A study of the temperature-dependent micellization of pluronic F127”, Journal of Colloid and Interface Science, Vol.216, pp.33-40(1999)
    [59] J. J. Escobar-Chávez, M. López-Cervantes, A.Naïk, Y. N. Kalia, D. Quintanar-Guerrero1, A.Ganem-Quintanar
    [60] C.E. Morosanu, Thin Films by Chemical Vapor Deposition, “The preparation, properties and applications of silicon nitride thinfilms deposited by plasma-enhanced chemical vapor deposition”, Thin Solid Films, Vol.204, pp.77-106 (2002)
    [61] Kyeongsik Ock, Namju Jo, Jaeho Kim, Sunghoon Kim, Kwangnak Koh, “Thin film optical waveguide type UV sensor using a photochromic molecular device, spirooxazine”, Synthetic Metals, Vol.117 ,pp.131-133(2001)
    [62] Kogoma M, Prat R, Suwa T, Takeda A, Okazaki S, Inomata T. NATO,“Advanced Study Institute Program: Plasma processing of polymers”, ASI series. Dordrecht: Kluwer,. p. 379–93(1997)
    [63] O. H. Kwon, A. Kikuchi, M. Yamato, T. Okano, “Accelerated cell sheet recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes”, Biomaterials, Vol.24, pp.1223-1232 (2003)
    [64] 張文能,“高分子材料”,CH5.,1984
    [65] De Izarra C. UV, “OH spectrum used as a molecular pyrometer”. Appl Phys, Vol.33,pp.1697–704 (2000)
    [66] Firas Awajaa , Michael Gilbert, Georgina Kelly, Bronwyn Fox, Paul J. Pigram, “Adhesion of polymers”, Progress in Polymer Science, Vol.34 pp.948–968 (2009)
    [67] Lisbeth Grøndahl, Francisco Cardona, Khang Chiem, Edeline Wentrup-Byrne, “Preparation and Characterization of the Copolymers Obtained by Grafting of Monoacryloxyethyl Phosphate onto Polytetrafluoroethylene Membranes and Poly(tetrafluoroethylene-co-hexafluoropropylene) Films”, Journal of Applied Polymer Science, Vol. 86, pp.2550–2556 (2002)
    [68] Meyer DE, Shin BC, Kong GA, Dewhirst MW, ChilkotiA. “Drug targeting using thermally responsive polymers and local hyperthermia”, J Control Release, Vol.74,pp.213-24( 2001)
    [69] Schild HG,Muthuku mar M,Tirrell DA. Cononsolvency in mixed aqueous solutionsofpoly(N-isopropylacrylamide).Macromolecules,Vol.24,pp.948-52(1991)
    [70] Ren-Shen Lee, Yi-Ting Huang, Wen-Hsin Chen, “Synthesis and Characterization of Temperature-Sensitive Block Copolymers from Poly(N-isopropylacrylamide) and 4-Methyl-e-caprolactone or 4-Phenyl-e-caprolactone”, Journal ofAppliedPolymer Science,Vol. 118, 1634–1642 (2010)
    [71] Hwang S-T, Kammermeyer K, “Transport properties of monovalent-ion-permselective membranes”, Chemical Engineering Science, Vol. 52, pp.3039-3031 (1975)
    [72] Strathemann H. Synthetic Membranes and their preparation, “Development of bipolar membranes”, Desalination, Vol.68, pp.279-292 (2001)
    [73] 陳忠葉,“環境感應型水凝膠於藥物控制釋放之應用”,私立元智工學院化學工程研究所,民國八十三年。
    [74] Brazel, S. and Peppas, A. “Synthesis and Characterization of Thermo-and Chemomechanically Responsive Poly(N-isopropylacrylamide-co-methacrylic acid) Hydrogels”, Macromolecules, Vol.28, (1995)
    [75] GRZEGORZEWSKI, F.; ROHN S.; QUADE, A.; SCHRÖDER, K.; EHLBECK, J.; SCHLÜTER, O.; KROH, L.W. “Reaction chemistry of 1,4-benzopyrone derivates in non-equilibrium low-temperature plasmas. Plasma Proces”s. Polym, 466(2010).
    [76] 王紹儒,“噴射式大氣電漿電腦電腦數值模擬研究-氦氣電漿參數之分析與 探討”, 國立清華大學工程與系統科學系電漿物理組碩士論文(2009)
    [77] 王曉萍,“大氣電漿束之特性分析”, 國立清華大學物理學系應物組碩士論文(2005)
    [78] Jiku Wang,, Xuyan Liu, Ho-Suk Choi , “Graft Copolymerization Kinetics of Acrylic Acid onto the Poly(ethylene terephthalate) Surface by Atmospheric Pressure Plasma Inducement”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 46, pp 1594–1601 (2008)
    [79] L. Thomas,, L. Maill´e, J.M. Badie, M. Ducarroir, “Microwave plasma chemical vapour deposition oftetramethylsilane: correlations between optical emission spectroscopy and film characteristics”, Surface and Coatings Technology, Vol.142, pp. 314-320 (2001)
    [80] Jiku Wang,, Xuyan Liu, Ho-Suk Choi , “Graft Copolymerization Kinetics of Acrylic Acid onto the Poly(ethylene terephthalate) Surface by Atmospheric Pressure Plasma Inducement”, Journal of Polymer Science: Part B: Polymer Physics, vol 46, pp.1594–1601 (2008).
    [81] 吳耀庭、黃曉鳳、溫俊祥,“電漿表面處理在生醫材料上之應用”, 工研院材料所高分子介面工程研究部 (2004)

    QR CODE