簡易檢索 / 詳目顯示

研究生: 張明益
Ming-Yi Chang
論文名稱: 中孔碳分子篩與活性碳作為觸媒載體的特性
The property of mesoporous carbon molecular sieve and activated carbon as catalyst supports
指導教授: 劉端祺
Tuan-Chi Liu
口試委員: 劉尚斌
Shang-Bin Liu
蕭敬業
Ching-Yeh Shiau
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 100
中文關鍵詞: 中孔碳活性碳
外文關鍵詞: mesoporous carbon, activated carbon
相關次數: 點閱:210下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究旨在探討以活性碳(AC)及中孔碳分子篩(SCM)作為觸媒載體,對觸媒性質的影響。研究中以含浸法及一步合成法將鎳或釕金屬負載於活性碳或中孔碳分子篩上,鎳系列觸媒以甲醇羰基化反應測試其活性,釕系列觸媒則以酜酸酐的氫化測試其活性。觸媒的甲醇羰基化活性於連續流動式微反應器中測之;觸媒的酜酸酐氫化活性則在高壓反應器(Parr reactor)中測之。
本研究所合成的觸媒以氣體吸附儀(BET)、X-ray繞射儀(XRD)、穿透式電子顯微鏡(TEM)、感應耦合電漿質譜儀(ICP-MS)、自動酸鹼滴定儀及化學吸附儀來鑑定其物化性質。比較二種載體所製的觸媒,以活性碳為載體的觸媒表面積較高,平均孔徑較小(但孔徑分布較廣)且有許多的微孔,基本上反應了原載體物性的差異。二種載體的表面官能基不同,活性碳鹼基多於酸基,中孔碳的則酸基多於鹼基,視負載金屬的不同,載體上酸鹼基的消長也不同,承載鎳使酸基及鹼基皆大幅增加,但承載釕僅能使酸基增加,鹼基反而減少。在一氧化碳的吸附能力上,Ni/AC觸媒遠大於Ni/SCM觸媒,前者只有一種吸附位,後者則有二種,其相對量隨金屬負載量而變。
以一步法合成製備的Ni/SCM觸媒,其金屬分散性差,觸媒的活性也不佳。在甲醇羰基化反應中,Ni/AC及Ni/SCM的活性相似,但在酜酸酐氫化反應中,Ru/SCM的活性則比Ru/AC高,顯示以中孔碳分子篩來製備觸媒,在小分子的反應中沒有優勢,只有在反應物分子尺寸較大時,才能發揮其減少輸送阻力的功效。


The objectives of this research are to explore the catalytic properties of metal catalyst supported on porous carbons, namely synthesized self-assembly carbon materials (SCMs) and activated carbon (AC). Incorporation of nickel (Ni) or ruthenium (Ru) catalysts onto the carbon supports were studied both by using the post-synthesis impregnation and one-pot direct synthesis method. The catalytic activities of various Ni/carbon catalysts with varied Ni loading were examined by methanol carbonylation reaction, whereas Ru/carbon catalysts were assessed by the hydrogenation of phthalic anhydride; the former reaction was carried out in a continuous flow micro-reactor while the latter was conducted in a Parr reactor.
The physicochemical properties of various supported catalyst were characterized by a variety of different analytical/spectroscopic techniques, viz. titration, ICP-MS, BET, XRD, TEM, and CO-TPD. In terms of their physical properties, the commercial activated carbon was found to possess a higher surface area, a smaller average pore size (but wider pore size distribution), and a greater amount of micropores compared to the home-made SCMs. Moreover, upon incorporation the Ni (or Ru), the supported Ni/AC catalysts were found to have more basic groups than acidic groups, whereas Ni/SCM catalysts revealed the opposite tread and dependent with the types and amount of loaded metals. Incorporation of Ni onto the carbon supports led to significant increases in both the acid and base groups, while addition of Ru resulted in an increase in the amount of acid groups and moderate decrease of the base groups. Moreover, Ni/AC catalysts, which revealed much greater carbon monoxide adsorption capacities than Ni/SCM catalysts, were found to possess only one type of adsorption site. The relative amounts of the two CO adsorption sites found in Ni/SCMs were found to vary with the metal content.
The dispersion of the metal on Ni/SCM catalyst prepared from the one-pot direct synthesis method is poor. As a consequence, it had low catalytic activity. Ni/AC and Ni/SCM catalysts prepared by impregnation had similar activity in the carbonylation of methanol. But Ru/SCM catalyst had higher activity than Ru/AC in the hydrogenation of phthalic anhydride. These observations demonstrated that large pore size in a catalyst can only help reactions involving molecules of large size by reducing the transport resistance.

摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 X 表目錄 XIII 第一章 緒論 1 第二章 文獻回顧 4 2.1中孔洞分子篩 4 2.2孔洞氧化矽材料 5 2.3中孔洞分子篩之合成機制 7 2.4孔洞性碳材簡介 9 2.4.1孔洞碳材的合成方法 12 2.4.2自組裝合成中孔碳材簡介 13 2.4.3自組裝合成中孔碳材之合成方法 14 2.4.4負載金屬孔洞性碳材 17 2.5甲醇羰基化反應 18 2.5.1均勻相觸媒 19 2.5.2非均勻相觸媒 27 2.6酜酸酐(PA)氫化反應 35 第三章 實驗 37 3.1實驗氣體、藥品與儀器設備 37 3.1.1實驗氣體 37 3.1.2實驗藥品 38 3.1.3實驗儀器設備 40 3.2觸媒的製備 41 3.2.1中孔碳材之自組裝合成 41 3.2.2以含浸法負載金屬 43 3.2.3以一步合成法負載金屬 43 3.3觸媒的鑑定 45 3.3.1感應耦合電漿質譜分析 (ICP-MS) 45 3.3.2氮氣等溫吸/脫附 (N2 adsorption/desorption isotherm) 45 3.3.3 X光繞射儀 (XRD) 50 3.3.4穿透式電子顯微鏡 (TEM) 51 3.3.5酸鹼官能基滴定 53 3.3.6一氧化碳程式升溫脫附 (CO-TPD) 54 3.3.7化學吸附分析 (金屬分散度分析) 56 3.4觸媒的反應活性測試 57 3.4.1甲醇羰基化反應 57 3.4.2酜酸酐(PA)氫化反應 59 第四章 結果與討論 61 4.1觸媒鑑定 62 4.1.1感應耦合電漿質譜分析 (ICP-MS) 62 4.1.2氮氣等溫吸/脫附 (BET) 63 4.1.3 X光繞射分析 (XRD) 71 4.1.4穿透式電子顯微鏡 (TEM) 74 4.1.5酸鹼官能基滴定 78 4.1.6程式升溫脫附 (TPD) 80 4.1.7化學吸附分析 (金屬分散度分析) 82 4.2觸媒的反應活性測試 83 4.2.1甲醇羰基化反應 83 4.2.1.1觸媒還原溫度的影響 83 4.2.1.2碘甲烷對反應的影響 85 4.2.1.3觸媒製備方法及碳材載體的影響 86 4.2.1.4金屬負載量的影響 87 4.2.1.5觸媒的穩定性 89 4.2.2酜酸酐(PA)氫化反應 90 第五章 結論 92 參考文獻 94

[1] Kresge, C. T., Leonowicz, M. E., Roth, W.J., Vartuli, J. C., Beck, J. S., “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism’’, Nature, 359, 710-712 (1992).
[2] Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, D., Chu, T. W., Olson, D. H., Sheppard, E. W., Higgins, S. B., Schlenker, J. L., “A new family of mesoporous molecular sieves prepared with liquid crystal templates”, J. Am. Chem. Soc., 114, 10834-10843 (1992).
[3] Wan, Y., Shi, Y. F., Zhao, D. Y., “On the controllable soft-templating approach to mesoporous silicates”, Chem. Mater., 107, 2821-2860 (2007).
[4] Zhao, D. Y., Huo, Q., Feng, J., Chmelka, B. F., Stucky, G. D., “Nonionic triblock and star diblock copolymer and oligomeric sufactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures”, J. Am. Chem. Soc., 120, 6024-6036 (1998).
[5] Inagaki, S., Fukushima, Y., Kuroda, K., “Synthesis of highly ordered mesoporous materials from a layered polysilicate”, J. Chem. Soc. Chem. Commun., 680-682 (1993).
[6] Ryoo, R., Kim, J. M., Ko, C. H., Shin, C. H., “Disordered molecular sieve with branched mesoporous channel network”, J. Phys. Chem., 100, 17718-17721 (1996).
[7] Bagshaw, S. A.; Prouzet, E., Pinnavaia, T. J., “Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants”, science, 269, 1242-1244 (1995).
[8] Tanev, P. T. and Pinnavaia, T. J., “A neutral templating route to Mesoporous molecular sieves”, Science, 267, 865-867 (1995).
[9] Wang, W., Xie, S., Zhou, W., Sayari, A., “Synthesis of Periodic Mesoporous Ethylenesilica under Acidic Conditions”, Chem. Mater., 16, 1756-1762 (2004).
[10] Zhang, Z., Han, Y., Xiao, F. S., Qiu, S., Zhu, L., Wang, R., Yu, Y., Zhang, Z.,
Zou, B., Wang, Y., Sun, H., Zhao, D. Y., Wei, Y., “Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures”, J. Am. Chem. Soc., 123, 5014-5021 (2001).
[11] Bhaumik, A. and Inagaki, S., “Mesoporous titanium phosphate molecular-sieves
with ion-exchange capacity”, J. Am. Chem. Soc., 123, 691-696 (2001).
[12] Han, Y., Wu, S., Sun, Y., Li, D., Xiao, F. S., “Hydrothermally stable ordered
hexagonal mesoporous aluminosilicates assembled from a triblock copolymer
and preformed aluminosilicate precursors in strongly acidic media”, Chem. Mater., 14, 1144-1148 (2002).
[13] Zhang, Z., Han, Y., Zhu, L., Wang, R., Yu Y., Qiu, S., Zhao, D. Y., Xiao, F. S.,
“Strongly acidic and high-temperature hydrothermally stable mesoporous
aluminosilicates with ordered hexagonal structure”, Angew. Chem. Int. Ed. 7,
258-1262 (2001).
[14] Han, Y., Xiao, F. S., Wu, S., Sun, Y., Meng, X., Li, D., Lin, S., “A novel method
for incorporation of heteroatoms into the framework of ordered meoporous silica
materials synthesized in strong acidic media”, J. Phsy. Chem. B., 105, 7963-7966
(2001).
[15] Fan, J., Yu, C., Gao, F., Lei, J., Tian, B., Wang, L., Luo, Q., Tu, B., Zhao, D. Y.,
“Cubic mesoporous silica with large controllable entrance sizes and advanced
adsorption properties”, Angew. Chem. Int. Ed., 42, 3146-3150 (2003).
[16] Garcia-Bennett, A. E., Williamsin, S., Wright, P. A., Shannon, I. J., “Control of
structure, pore size and morphology of three-dimensionally ordered mesoporous
silicas prepared using the dicationic surfactant
[CH3(CH2)15N(CH3)2(CH2)3N(CH3)3]BR2”, J. Meter. Chem., 12, 3533-3540
(2002).
[17] Vinu, A., Murugesan, V., Hartmann, M., “Pore size engineering and mechanical
stability of the cubic mesoporous molecular sieve SBA-1”, Chem. Meter., 15,
1385-1393 (2003).
[18] Lin, H. P., Tang, C. Y., Lin, C. Y., “Detailed structural characterizations of
SBA-15 and MCM-41 mesoporous silicas on a high-resolution transmission
electron microscope”, J. Chin. Chem. Soc., 49, 981-988 (2002).
[19] Alfredsson, V. and Anderson, M. W., “Structure of MCM-48 revealed by
transmission electron microscopy”, Chem. Mater., 8, 1141-1146 (1996).
[20] Lin, H. P. and Mou, C. Y., “Structural and morphological control of cationic
surfactant-templated mesoporous silica”, Acc. Chem. Res., 35, 927-935 (2002).
[21] Huo, Q., Margolese, D. I., Stucky, G. D., “Surfactant Control of Phases in the
Synthesis of Mesoporous Silica-Based Materials”, Chem. Mater., 8, 1147-1160
(1996).
[22] Tolbert, S. H., Landry, C. C., Stucky, G. D., Chmelka, B. F., Norby, P., Hanson,
J. C., Monnier, A., “Phase transitions in mesostructured silica/surfactant
composites: Surfactant packing and the role of charge density matching”, Chem,
Mater., 13, 2247-2256 (2001).
[23] Kim, J. M., Sakamoto, Y., Hwang, Y. K., Uk-Kwon, Y., Terasaki, O., Park, S. E.,
Stucky, G. D., “Structural design of mesoporous silica by micelle-packing control
using blends of amphiphilic block copolymers”, J. Phys. Chem. B., 106,
2552-2558 (2002).
[24] Margolese, D., Melero, J. A., Christiansen, C., Chemelka, B. F., Stukey, G. D.,
“Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid
groups”, Chem. Mater., 12, 2448-2459 (2002).
[25] Walcarius, A., Etienne, M., Lebeau, B., “Rate of access to the binding sites in
organically modified silicates. 2. Ordered mesoporous silicas grafted with amine
or thiol groups”, Chem. Mater., 15, 2161-2173 (2003).
[26] Yokoi, T., Yoshitake, H., Tatsumi, T., “Synthesis of amino-functionalized
MCM-41 via direct co-condensation and post-synthesis grafting methods using
mono-, di- and tri-amino- organoalkoxysilanes”, J. Mater. Chem., 14, 951-957
(2004).
[27] Noll, F., Sumper, M., Hampp, N., “Nanostructure of Diatom Silica Surfaces
and of Biomimetic Analogues”, Nano. Lett., 2, 91-95 (2002).
[28] Mann, S., “The chemistry of form”, Angew. Chem. Int. Ed., 39, 3393-3406
(2000).
[29] Zuna, R., Colloids Surf., 27, 123 (1997).
[30] Chen, C., Li, H., Daris, M. E., “Studies on mesoporous materials. I. Synthesis
and characterization of MCM-41”, Microporous Matels., 2, 17-26 (1993).
[31] Knox, J. H., Kaur, B., Millward, G. R., “Structure and performance of porous
graphitic carbon in liquid chromatography”, J. Chromatogr., 352, 3-25 (1986).
[32] Kaneda, M., Tsubakiyama, T., Carlsson, A., Sakamoto, Y., Ohsuna, T., Terasaki,
O., Joo, H., Ryoo, R., “Structural study of mesoporous MCM-48 and carbon
networks synthesized in the spaces of MCM-48 by electron crystallography”, J.
Phys. Chem. B., 106, 1256-1266 (2002).
[33] Ryoo, R., Joo, S. H., Jun, S., “Synthesis of highly ordered carbon molecular
sieves via template-mediated structural transformation”, J. Phys. Chem. B., 103,
7745-7746 (1999).
[34] Jun, S., Joo, S. H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T.,
Terasaki, O., “Synthesis of new, nanoporous carbon with hexagonally ordered
mesostructure [5]”, J. Am. Chem. Soc., 122, 10712-10713 (2000).
[35] Ohkubo, T., Miyawaki, J., Kaneko, K., Ryoo, R., Seaton, N. A., “Adsorption
properties of templated mesoporous carbon (CMK-1) for nitrogen and
supercritical methane - Experiment and GCMC simulation”, J. Phys. Chem. B.,
106, 6523-6528 (2002).
[36] Joo, S. H., Ryoo, R., Kruk, M., Jaroniec, M., “Evidence for general nature of
pore interconnectivity in 2-dimensional hexagonal mesoporous silicas prepared
using block copolymer templates”, J. Phys. Chem. B., 106, 4640-4646 (2002).
[37] Joo, S. H., Choi, S. J., Oh, I., Kwak, J., Liu, Z., Terasaki, O., Ryoo, R. “Ordered
nanoporous arrays of carbon supporting high dispersions of platinum
nanoparticles”, Nature, 412, 169-172 (2001).
[38] Kyotani, T., Nagai, T., Inous, S., Tomita, A., “Formation of new type of porous
carbon by carbonization in zeolite nanochannels”, Chem. Mater., 9, 609-615
(1997).
[39] Joo, S. H., Ryoo, R., Kruk, M., Jaroniec, M., “Ordered mesoporous carbons”,
Adv. Mater., 13, 677-681 (2001).
[40] Lee, J. S., Hirao, A., Nakahama, S., “Polymerization of monomers containing
functional silyl groups. 5. Synthesis of new porous membranes with functional
groups”, Macromolecules, 21, 274-276 (1988).
[41] Moriguchi, I., Ozono, A., Mikuriya, K., Teraoka, Y., Kagawa, S., Kodama, M.,
“Micelle-templated mesophases of phenol-formaldehyde polymer”, Chem. Lett.,
1171-1172 (1999).
[42] Li, Z. J., Yan, W. F., Dai, S., “A novel vesicular carbon synthesized using
amphiphilic carbonaceous material and micelle templating approach”, Carbon,
42, 767-770 (2004).
[43] Meng,Y., Gu, D., Zhang, F. Q., Shi, Y. F., Cheng, L., Feng, D., Wu, Z. X., Chen.
Z. X., Wan, Y., Stein, A., Zhao, D. Y., “A family of highly ordered mesoporous
polymer resin and carbon structures from organic-organic self-assembly”, Chem.
Mater., 18, 4447-4464 (2006).
[44] Liang, C. D., Hong, K. L., Guiochon, G. A., Mays, J. W., Dai, S., “Synthesis of a
large-scale highly ordered porous carbon film by self-assembly of block
copolymers”, Angew. Chem. Int. Ed., 43, 5785-5789 (2004).
[45] Tanaka, S., Nishiyama, N., Egashira, Y., Ueyama, K., “Synthesis of ordered
mesoporous carbons with channel structure from an organic-organic
nanocomposite”, Chem. Commun., 2125-2127 (2005).
[46] Meng, Y., Gu, D., Zhang, F. Q., Shi, Y. F., Yang, H. F., Li, Z., Yu, C. Z., Tu, B.,
Zhao, D. Y., “Ordered mesoporous polymers and homologous carbon
frameworks: Amphiphilic surfactant templating and direct transformation”,
Angew. Chem. Int. Ed., 44, 7053-7059 (2005).
[47] Brinker, C. J., Lu, Y. F., Sellinger, A., Fan, H. Y., “Evaporation-induced
self-assembly: Nanostructures made easy”, Adv. Mater., 11, 579-585 (1999).
[48] Zhang, F. Q., Meng, Y., Gu, D., Yan, Y., Yu, C. Z., Tu, B., Zhao, D. Y., “A facile
aqueous route to synthesize highly ordered mesoporous polymers and carbon
frameworks with Ia3d bicontinuous cubic structure”, J. Am. Chem. Soc., 127,
13508-13509 (2005).
[49] Zhang, F. Q., Meng, Y., Gu, D., Yan, Y., Chen, Z. X., Tu, B., Zhao, D. Y., “An
aqueous cooperative assembly route to synthesize ordered mesoporous carbons
with controlled structures and morphology”, Chem. Mater., 18, 5279-5288
(2006).
[50] Liang, C. D. and Dai, S., “Synthesis of Mesoporous Carbon Materials via
Enhanced Hydrogen-Bonding Interaction”, J. Am. Chem. Soc., 128, 5316-5317
(2006).
[51] Grosso, D., Cagnol, F., Soler-Illia, G., Crepaldi, E., Amenitsch, H.,
Brunet-Bruneau, A., Bourgeois, A., Sanchez, C., “Fundamentals of
mesostructuring through evaporation-induced self-assembly”, Adv. Funct. Mater.
, 14, 309-322 (2004).
[52] Hu, Q. Y., Kou, R., Pang, J. B., Ward, T. L., Cai, M., Yang, Z. Z., Lu, F., Tang, J.,
“Mesoporous carbon/silica nanocomposite through multi-component assembly”,
Chem. Commun., 601-603 (2007).
[53] Kim, S. H., Misner, M. J., Xu, T., Kimura, M., Russell, T. P., “Highly
oriented and ordered arrays from block copolymers via solvent evaporation”,
Adv. Mater., 16, 226-231 (2004).
[54] Sidorenko,A., Tokarev, I., Minko, S., Stamm, M., “Ordered reactive
nanomembranes/nanotemplates from thin films of block copolymer
supramolecular assembly”, J. Am. Chem. Soc., 125, 12211-12216 (2003).
[55] Liu, S. H., Lu, R. F., Huang, S. J., Lo, A. Y., Chien, S. H., Liu, S. B., “Controlled synthesis of highly dispersed platinum nanoparticles in ordered mesoporous carbons”, Chem. Commun., 32, 3435-3437 (2006).
[56] Liu, S. H., Yu, W. Y., Chen, C. H., Lo, A. Y., Hwang, B. J.,Chien S. H., Liu, S. B., “Fabrication and characterization of well-dispersed and highly stable PtRu nanoparticles on carbon mesoporous material for applications in direct methanol fuel cell”, Chem. Mater., 20, 1622-1628 (2008).
[57] 江建章,「自組裝合成中孔碳材之表面修飾及負載鉑(Pt)金屬觸媒之製備、特
性鑑定及其在DMFC/PEMFC燃料電池之應用」,國立台灣師範大學化學研
究所碩士論文 (2008)。
[58] Roth, J. F., Craddock, J. H., Herchman, A., Paulik, F. E., ”Lowpressure process
for acetic acid via carbonylation of methanol”, Chem Tech. Oct. 600-605 (1971).
[59] Forster, D. and Singleton, T. C., “Homogenous catalytic reaction of methanol
with carbon Mmonoxide”, J. Mol. Catal., 17, 299-314 (1982).
[60] Thomas, C. M., and Suss-Fink, G. “Ligand effects in the rhodium catalyzed
carbonylation of methanol”, Coord. Chem. Rev., 243, 125-142 (2003).
[61] Jean, G-L. and Perron, R., “Preparation of carbonylic acid by carbonylation of
alcohols”, U. S. Pat., 4, 351, 953 (1982).
[62] Isshiki, T., Kijima, Y., Miyauchi, Y., Kondo, T., “Process for producing
carboxylic acids”, U. S. Pat., 4, 620, 033 (1986).
[63] Matsumoto, T., Mizoroki, T., Qzaki, A., “Mechanistic study of methanol
carbonylation catalyzed by an iridium complex in the presence of methyl iodide”, J. Catal., 51, 96-100 (1978).
[64] Forster, D., “Kinetic and spectroscopic studies of the carbonylation of methanol
with an iodide-promoted iridium catalyst”, J. Chem. Soc. Dalton. Trans. II,
1639-1645 (1979).
[65] Weymouth, F. J. and Millidge, A. F., “The manufacture and use of acetic acid”,
Chemistry and Industry, May, 887-893 (1966)
[66] Jarrel, M. S. and Gates, B. C., “Methanol carbonylation catalyzed by a
polymer-bound rhoudium(I) complex”, J. Catal., 40, 225-267 (1975).
[67] Webber, K. M., Gates, B. C., Drenth, W., “Design and synthesis of a solid
bifunctional polymer catalyst for methanol carbonylation”, J. Catal., 3, 1-9
(1977).
[68] Hamato K., Minami, T., Shimokawa, K., Shiroto, Y., Yoneda, N., “Supported
rhodium catalyst, method of preparing same and process of producing acetic
acid by methanol carbonylation using same”, U. S. Pat., 5, 364, 963 (1994).
[69] Krzywicki, A. and Marcezwski, M., “Formation and evolution of the active site
for methanol carbonylation on oxide catalysts”, J. Mol. Catal., 6, 431 (1979).
[70] Blasio, N. D., Wright, M. R., Tempesti, E., “The relative importance of
heterogeneous and homogeneous methanol carbonylation using supported
rhodium catalysts in the liquid phase”, J. Organomet. Chem., 551, 229-234
(1998).
[71] Christensen, B. and Scurrell, M. S., “Selectivity of heterogeneous rhodium
catalyst for the carbonylation of monohydric alcohols”, J. Chem. Soc. Faraday.
Trans. I, 73, 2036 (1977).
[72] Andersen, S. L. T. and Scurrell, M. S., “Observations on an alternative route for
the preparation of Rh-zeolites active in the carbonylation of methanol”, J. Mol.
Catal., 18, 375 (1983).
[73] Fujimoto, K., Shilkada, T., Omata, K., Tominaga, H., “Vapor phase carbonylation
of methanol with solid acid catalysts”, Chem. Lett., 2047 (1984).
[74] Feliter, D. “Production of carboxylic acids and esters”, U. S. Pat., 5, 026, 907
(1986).
[75] Howard, M. J., Jones, M. D. Roberts, M. S., “C1 to Acetyls:Catalysis and
Process”, Catal. Today, 18, 325-354 (1993).
[76] Merenov, A. S., Nelson, A., Abraham, M. A., “Support effect of nickel on
activated carbon as catalyst for vapor phase methanol carbonylation”, Catal.
Today, 55, 91-101 (2000).
[77] Peng, F. and Fu, X. B., “Direct vapor phase carbonylation of methanol at
atmospheric pressure on activated carbon supported NiCl2-CuCl2 catalysts”,
Catal. Today, 93-95, 451-455 (2004).
[78] 陳吟足,「硼化鎳/活性碳觸媒於甲醇羰基化反應之研究」,第六屆觸媒及反
應工程研討會 (1989)。
[79] Liu, T. C. and Chiu, S. J., “Promoting effect of tin on Ni/C catalyst for methanol
carbonylation”, Ind. Eng. Chem. Res., 33, 488-492 (1994).
[80] Merenov, A. S. and Abraham, M. A., “Catalyzing the carbonylation of methanol
using a heterogeneous vapor phase catalyst”, Catal. Today, 40, 397-404 (1998).
[81] Jiang, H., Liu, Z. Y., Pan, P. L., “A novel supported catalyst for the carbonylation
of methanol”, J. Mol. Catal. A, 148, 215-225 (1999).
[82] 謝敏聰,「活性碳的氯化對Ni/C觸媒羰基化活性的影響」,台灣科技大學化
工系碩士論文 (2006)。
[83] 莊坤榮,「奈米碳管的觸媒性質及碳基化活性」,台灣科技大學化工系碩士論
文 (2004)。
[84] 王建翔,「奈米碳管的改質與碳基化活性」,台灣科技大學化工系碩士論文
(2005).
[85] Liu, Y., Xing, T., Wei, Z., Li, X., Yan, W., “Liquid Phase Selective
Hydrogenation of Phthalic Anhydride to Phthalide over Titania Supported Gold
Catalysts”, Catalysis Communications 10(15), 2023-2026 (2009).
[86] 邱淑哲,「PA(酜酸酐)氫化製程開發」,明志科技大學產學合作專題研究計畫
書 (2008)。
[87] 邱淑哲,「PA(酜酸酐)氫化製程開發(II)」,明志科技大學產學合作專題研究
計畫書 (2009)。
[88] Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A.,
Rouquerol, J., Siemieniewska, T., “REPORTING PHYSISORPTION DATA
FOR GAS/SOLID SYSTEMS with special reference to the determination of
surface area and porosity”, Pure&Appl. Chem., 57, 4, 603-619 (1985).
[89] 洪鈴雅,「奈米二氧化鈦粒子嵌入中孔洞氧化矽材之合成與分析及性質之探
討」,國立成功大學材料科學及工程學系碩士論文 (2007)。
[90] Boehm, H. P., “Some aspects of the surface chemistry of carbon blacks and
other carbons”, Carbon, 32, 759-769 (1994).

QR CODE