簡易檢索 / 詳目顯示

研究生: 徐聖揚
Sheng-Yang Hsu
論文名稱: 苯與過氧化氫氧化製酚的研究
Synthesis of Phenol from Benzene and Hyperoxide
指導教授: 劉端祺
Tuan-Chi Liu
口試委員: 蕭敬業
Ching-Yeh Shiau
吳紀聖
Jeffrey Chi-Sheng Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 68
中文關鍵詞: 磷酸鋁分子篩過氧化氫. 氧化
外文關鍵詞: phenol, benzene, hyperoxide, hydroxylation
相關次數: 點閱:243下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以高分子阻截、逆微胞及空間限制等特殊觸媒製備法,在水熱條件下合成含銅的磷酸鋁分子篩觸媒Cu-AlPO4-5,並期望這些觸媒能較傳統方法合成的Cu-AlPO4-5有更小的粒徑及觸媒活性。
所合成的觸媒以場發射掃描式電子顯微鏡(FESEM)、X-光繞射光譜(XRD)、氣體吸附儀(BET)、傅立葉轉換紅外線光譜(FTIR)及感應耦合電漿原子發射光譜(ICP-AES)鑑定其特性,並以液相苯與雙氧水反應製酚的反應測試其活性。
實驗結果發現,三種特殊方法合成的觸媒,其晶體尺寸雖較傳統製備法小,但結構皆與AlPO4-5不同,其中以高分子阻截法製備的觸媒,其微孔體積及酸量皆較以傳統法製備的Cu-AlPO4-5高,也展現較高的活性。以逆微胞法製成的觸媒,不具微孔,也沒有酸性,活性最差。以空間限制法製成的觸媒,其成分大部份為不定形物,微孔量及酸量皆較以傳統法製備的Cu-AlPO4-5低,觸媒活性也較差。


In this research, three methods, including polymer-blocking, reverse micelles, and confined space, were used to prepare Cu-AlPO4-5 under hydrothermal condition. These methods were used with the expectation that the catalysts prepared would have smaller particle size and better catalytic activity than that obtained by conventional method.
All the catalysts synthesized in this research were characterized by using FESEM, XRD, BET, FTIR, and ICP-AES. The activities of the catalysts were determined by the hydroxylation of benzene to produce phenol in the presence of H2O2.
The results show that although the attempted methods can produce catalysts with particle sizes smaller than that of conventional method, their crystalline structures are different. The catalyst prepared by polymer blocking method has the greatest micro-pore volume and number of acid site among the catalysts. As a consequence, it possesses the highest activity. The catalyst prepared by reverse micelles method has no micro-pore volume and acid site, and its activity is the lowest. The catalyst prepared by confined space method is mostly amorphous. It has less micro-pore volume and acid site than the conventional catalyst, and the activity is also lower.

中文摘要…………………………………………………………...…....I 英文摘要…………………………………………………………...…..II 誌謝……………………………………………………………………III 目錄……………………………………………………………………IV 表目錄………………………………………………………………...VII 圖目錄………………………………………………………………..VIII 第一章 緒論……………………………………………………………1 第二章 文獻回顧………………………………………………………2 2.1 酚…………………………………………………………….2 2.1.1 酚的基本介紹及應用…………………………………..2 2.1.2 酚的合成方法…………………………………………..4 2.2 苯直接催化氧化製酚……………………………………….9 2.3 磷酸鋁分子篩……………………………………………...13 2.4 不同的含銅磷酸鋁分子篩的製備方法…………………...15 2.4.1 高分子阻截法製備觸媒………………………………15 2.4.2 逆微胞法製備觸媒……………………………………16 2.4.3 空間限制法製備觸媒…………………………………18 第三章 實驗方法與製備…………………………………………......20 3.1 實驗藥品與設備…………………………………………...20 3.1.1 實驗藥品………………………………………………20 3.1.2 實驗氣體……………………………………………....21 3.1.3 實驗器材、儀器設備…………………………………21 3.1.4碳黑…………………………………………………….22 3.2 觸媒製備…………………………………………………...22 3.2.1 傳統法製備含銅磷酸鋁分子篩………………………22 3.2.2 高分子阻截法製備含銅磷酸鋁分子篩……………....23 3.2.3 逆微胞法製備含銅磷酸鋁分子篩…………………....23 3.2.4空間限制法製備含銅磷酸鋁分子篩………………….24 3.3 以雙氧水氧化苯製酚的反應………………..…………….25 3.3.1 液相反應裝置……………………………..…………..25 3.3.2 分析方法與儀器……………………………..………..25 3.4 觸媒鑑定…………………………………………..……….27 3.4.1 場發射掃描式電子顯微鏡 (FESEM)………….…….27 3.4.2 X-光繞射光譜分析 (XRD)……………………….…..28 3.4.3 BET表面積與微孔體積測定………………………....30 3.4.4 傅立葉轉換紅外線光譜 (FTIR)……………………..33 3.4.5 感應耦合電漿原子發射光譜法 (ICP-AES)...……….35 第四章 結果與討論…………………………………………….…….37 4.1 觸媒的鑑定…………………………………………….…..37 4.1.1感應耦合電漿原子發射光譜分析 (ICP-AES)……….37 4.1.2 X-光繞射分析 (XRD)…………………………………38 4.1.3 場發射掃描式電子顯微鏡 (FESEM)………………...41 4.1.4 表面積測定與氣體吸附測定 (BET)…………………47 4.1.5 傅立葉轉換紅外線光譜分析 (FTIR)………………...49 4.2 苯製酚的液相反應………………………………………...53 4.2.1 反應溫度的效應………………………………………53 4.2.2 觸媒製備方法的效應…………………………………55 4.2.3 Cu-AlPO-N合成的水熱時間的效應………………….60 4.2.4 銅金屬負載量的效應…………………………………61 第五章 結論…………………………………………………………..63 第六章 參考文獻……………………………………………………..64 表目錄 表3.1-1. 實驗藥品……………………………………………………20 表3.1-2. 實驗氣體……………………………………………………21 表3.1-3. 實驗器材及儀器設備………………………………………21 表4.1-1. 觸媒命名……………………………………………………37 表4.1-2. 觸媒的組成…………………………………………………38 表4.1-3. 以XRD半高寬計算的觸媒晶體粒徑……………………..41 表4.1-4. 觸媒的物理性質……………………………………………48 表4.2-1. 觸媒的活性係數……………………………………………57 表4.2-2. 觸媒的失活速率常數………………………………………59 圖目錄 圖2.3-1. AlPO4-5的結構……………………………………………..14 圖2.4-1. 水/界面活性劑/油所組成的三成份系統…………………. 17 圖3.3-1. 氧化苯製酚反應的典型GC分析圖譜……………………26 圖3.4-1. 場發射掃描式電子顯微鏡(FESEM)設備圖………………28 圖3.4-2. X光經過晶體的繞射圖…………………………………….29 圖3.4-3. (a)中孔型物質t-plot………………………………………...31 圖3.4-3. (b)微孔型物質t-plot………………………………………...31 圖3.4-4. 表面積與孔洞測量儀(Autosorb-1)………………………...32 圖3.4-5. 典型的FTIR光譜儀……………………………………….34 圖4.1-1. 不同的觸媒合成方法的XRD繞射圖…………………….39 圖4.1-2. Cu-AlPO-N六角柱狀晶體的SEM圖……………………..43 圖4.1-3. Cu-AlPO-N圓球形狀聚集的SEM圖……………………..43 圖4.1-4. Cu-AlPO-PVP六角柱狀晶體的SEM圖………………….44 圖4.1-5. Cu-AlPO-PVP的圓球形狀堆積SEM圖………………….44 圖4.1-6. Cu-AlPO-CTAB的六角柱狀晶體SEM圖………………..45 圖4.1-7. Cu-AlPO-CTAB的圓球形狀堆積SEM圖………………..45 圖4.1-8. Cu-AlPO-CB的SEM圖…………………………………...46 圖4.1-9. 觸媒的FTIR圖譜………………………………………….50 圖4.1-10. Pyridine的吸附型態……………………………………….51 圖4.1-11. 觸媒吸附pyridine的FTIR圖譜…………………………52 圖4.2-1. 反應溫度對苯轉化率的影響………………………………54 圖4.2-2. H2O2在70℃下莫耳數對時間的關係圖…………………...54 圖4.2-3. 觸媒製備方法對苯轉化率的影響…………………………56 圖4.2-4. 觸媒活性係數對時間的關係圖……………………………58 圖4.2-5. 不同的水熱時間對觸媒活性的影響………………………60 圖4.2-6. 銅金屬負載量對觸媒活性的影響…………………………62

1. Panov, G. I., A. S. Kharitonov, and V. I. Sobolev, “Oxidative Hydroxylation Using Dinitrogen Monoxide: A Possible Route for Organic Synthesis over Zeolites”, Appl. Catal. A-Gen., 98, 1-20 (1993).
2. Liptakova, B., M. Bahidsky, and M. Hronec, “Preparation of Phenol From Benzene by One-step Reaction”, Appl. Catal. A-Gen., 263, 1, 33-38 (2004).
3. Hiemer, U., E. Klemm, F. Scheffler, T. Selvam, W. Schwieger, and G. Emig, “Microreaction Engineering Studies of the Hydroxylation of Benzene with Nitrous Oxide”, Chem. Eng. J., 101, 1-3, 17-22 (2004).
4. Yuranov, I., Bulushev, A. Dmitri, Renken, Albert, Kiwi-Minsker, and Lioubov, “Benzene Hydroxylation over ZSM-5 Catalysts: Which Fe Sites Are Active? ”, J. Catal., 227, 1, 138-147 (2004).
5. Gopalakrishnan, S., J. Munch, R. Herrmann, and W. Schwieger, “Effects of Microwave Radiation on One-Step Oxidation of Benzene to Phenol with Nitrous Oxide Over Fe-ZSM-5 Catalyst”, Chem. Eng. J., 120, 1-2, 99-105 (2006).
6. Kubacka, Anna, Z. Wang, B. Sulikowski, and C. V. Cortes, “Hydroxylation/Oxidation of Benzene over Cu-ZSM-5 System: Optimization of the One-step Route to Phenol”, J. Catal., 250, 1, 184-189 (2007).
7. Li, Liang, J.-L. Shi, J.-N. Yan, X.-G. Zhao, and H.-G. Chen, “Mesoporous SBA-15 Material Functionalized with Ferrocene Group and Its Use as Heterogeneous Catalyst for Benzene Hydroxylation”, Appl. Catal. A-Gen., 263, 2, 213-217 (2004).
8. Choi, J. S., T. H. Kim, K. Y. Choo, J. S. Sung, M. B. Saiduda, S. D. Song, and Y. W. Rhee, “Transition Metals Supported on Activated Carbon as Benzene Hydroxylation Catalysts”, J. Porous Mat., 12, 301-310 (2005).
9. Parida, K. M., and D. Rath, “Structural Properties and Catalytic Oxidation of Benzene to Phenol over CuO-impregnated Mesoporous Silica”, Appl. Catal. A-Gen., 321, 2, 101-108 (2007).
10. Parida, K. M., and S. S. Dash, “Surface Characterization and Catalytic Evaluation of Manganese Nodule Leached Residue Towad Oxidation of Benzene to Phenol”, J. Colloid Interf. Sci., 316, 2, 541-546 (2007).
11. Jian, M., L. Zhu, J. Wang, J. Zhang, G. Li, and C. Hu, “Sodium Metavanadate Catalyzed Direct Hydroxylation of Benzene to Phenol with Hydrogen Peroxide in Acetonitrile Medium”, J. Mol. Catal. A-Chem., 253, 1-2, 1-7 (2006).
12. Zhang, J., Y. Tang, G. Li, and C. Hu, “Room Temperature Direct Oxidation of Benzene to Phenol Using Hydrogen Peroxide in the Presence of Vanadium-Substituted Heteropolymolybdates”, Appl. Catal. A-Gen., 278, 2, 251-261 (2005).
13. Zhong, Y., G. Li, L. Zhu, Y. Yan, G. Wu, and C. Hu, “Low Temperature Hydroxylation of Benzene to Phenol by Hydrogen Peroxide over Fe/Activated Carbon Catalyst”, J. Mol. Catal. A-Chem., 272, 1-2, 169-173 (2007).
14. Chang, C. D., W. H. Lang, J. Catal., 56, 268 (1979).
15. Chang, C. D., W. H. Lang, R. L. Smith, J. Catal., 56,169 (1979).
16. Tominaga, H., Ind. Eng. Chem. Prod. Res. Dev., 25, 262 (1968).
17. Fujimoto, K., H. Saimi, J. Catal., 94, 16 (1985).
18. Wilson, S. T., B. M. Lok, C. A. Messina, T. R. Cannan, and E. M. Flanigen, “Aluminophosphate Molecular Sieves: A New Class of MIcroporous Crystalline Inorganic Solids”, J. Am. Chem. Soc. 104, 1146 (1982).
19. Wilson, S. T., B. M. Lok, and E. M. Flanigen, “Crystalline Metallophosphate Compositions”, U.S. Patent 4, 310, 440 (1982).
20. Bennent, J. M., J. P. Cohen, E. M. Flanigen, J. J. Pluth, and J. V. Smith, “Crystal Structure of Tetrapropylammonium Hydroxide-Aluminum Phosphate Number 5”, ACS. Symp. Ser., 218, 109 (1983).
21. 吳孝忠,「磷酸鋁分子篩表面酸性的研究」,國立中央大學,化學工程研究所,碩士論文,民國86年。
22. Lok, B. M., C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan, and E. M. Flanigen, “Silicoaluminophosphate Molecular Sieves: Another New Class of Microporous Crystalline Inorganic Solids”,J. Am. Chem. Soc., 106, 6092 (1984).
23. Lok, B. M., C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan, and E. M. Flanigen,”Crystalline Silicoaluminophosphates”, U.S. Patent 4, 440, 871 (1984).
24. Wilson, S. T., and E. M. Flanigen, “Crystalline Metal Aluminophosphate”, U.S. Patent 4, 567, 029 (1986).
25. Flanigen, E. M., B. M. Lok, R. L. Patton, and S. T. Wilson, ”Aluminophosphate Molecular Sieves and the Periodic Table”, Proceedings of the 7th Intl. Zeolite Conf., P.103 (1986).
26. Atlas of Zeolite Structure Types, Zeolites, 17, 27 (1996).
27. Kralik, K. and A. Biffis, “Catalysis by Metal Nanoparticles Supported on Functional Organic Polymers”, J. Mol. Catal. A, 177, 113 (2001).
28. Huang, H. H., X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loy, J. F. Deng, and G. Q. Xu, “Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone)”, Langmuir, 12, 909 (1996).
29. Hirai, H., N. Yakura, Y. Seta, and S. Hodoshima, “Characterization of Palladium Nanoparticles Protected with Polymer as Hydrogenation Catalyst”, React. Funct. Polym., 37, 121 (1998).
30. Mayer, A. B. R., and J. E. Mark, “Colloidal Gold Nanoparticles Protected by Water-Soluble Homopolymers and Random Copolymer”, Eur. Polym. J., 34, 103 (1998).
31. Teranishi, T., and M. Miyake, “Size Control of Palladium Nanoparticles and Their Crystal Structure”, Chem. Mater., 10, 594 (1998).
32. Teranishi, T., M. Hosoe, T. Tanaka, and M. Miyake, “Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophporetic Deposition”, J. Phys. Chem. B., 103, 3818 (1999).
33. 蔡政勳,「高分子穩定化奈米NiB觸媒之製備與催化性質研究」,國立中央大學,化學工程研究所,碩士論文,民國92年。
34. 江淑媜,「奈米化非晶態NiB觸媒的製備與氫化反應研究」,國立中央大學,化學工程研究所,博士論文,民國97年。
35. 王正全,「鈀奈米粒子之製備與應用」,國立成功大學,化學工程與材料工程研究所,碩士論文,民國90年。
36. Nagy, J. B., “Multinuclear NMR Characterization of Microemulsions: Preparation of Monodisperse Colloidal Metal Boride Particles”, Colloid Surface, 35, 201-220 (1989).
37. Toshiaki, H., T. Hatsuta, T. Tago, M. Kishida, K. Wakabayashi, “Control of the Rhodium Particle Size of the Silica-Supported Catalysts by Using Microemulsion”. Appl. Catal. A-Gen., 190, 291-296 (2000).
38. Masahiro, K., T. Hanaoka, W. Y. Kim, H. Nagata, T. Tago, K. Wakabayashi, “Size Control of Rhodium Particle of Silica-Supported Catalysts Using Water-in-Oil Microemulsion”, Appl. Surf. Sci., 121/122, 347-350 (1997).
39. Iver, S., M. Claus, and J. H. Claus Jacobsen, “Confined Space Synthesis. A Novel Route to Nanosized Zeolites”, Inorg. Chem., 39, 2279-2283 (2000).
40. 周慧英,「含銅磷酸鋁分子篩之催化活性探討」,國立台灣大學,化學研究所,碩士論文,民國87年。
41. Johnson, M. F. L., J. Catal., 52, 425 (1978).
42. Coudurier, G., J. Chem. Soc., Chem. Commum., 1413 (1982).
43. Parry, I. P., “An Infrared Study of Pyridine Adsorbed on Acidic Solids, Characterization of Surface Acidity”, J. Catal., 2, 371-379 (1963).

QR CODE